

MATH-111(en)

Linear Algebra

Fall 2024 Annina Iseli

Homework 1

Ex 1.1 (Solving linear systems I)

Solve the following systems of linear equations by finding the augmented matrix and using row elimination. Once you solved a system, make sure to display your solution in correct notation.

a)
$$\begin{cases} x+y = 5 \\ 2x-5y = 4 \end{cases}$$
 b)
$$\begin{cases} x+y+z = 3 \\ x-y = 0 \\ x = -46 \end{cases}$$
 c)
$$\begin{cases} 2x+3y+z = 0 \\ x-y+z = 1 \\ 3x+2y+2z = 1 \end{cases}$$

Ex 1.2 (Solving linear systems II)

Find the augmented matrix of the following linear systems and use it to solve them.

a)
$$\begin{cases} w - x + z &= 1 \\ x - 2y - z &= 0 \\ w + 3y &= 2 \end{cases}$$
 b)
$$\begin{cases} 2x - 5y + 4z &= 0 \\ x + y + z &= 0 \\ 4x - 3y + 6z &= 1 \end{cases}$$
 c)
$$\begin{cases} x - 2y + 3z &= 1 \\ 2x - 4y + 6z &= 2 \\ -x + 2y - 3z &= -1 \end{cases}$$

Ex 1.3 (Solving linear systems III)

Find the augmented matrix of the following linear systems and use it to solve them.

a)
$$\begin{cases} w - x + y - z &= 1 \\ w + z &= 2 \end{cases}$$
 b)
$$\begin{cases} x + y &= 0 \\ 3x + 5y &= 2 \\ 2x + 4y &= 2 \end{cases}$$

Ex 1.4 (Linear systems with a parameter)

Determine for which $a \in \mathbb{R}$ the following system has no solution, a unique solution, or infinitely many solutions.

$$\begin{cases} x - 2y + 3z = 2\\ x + 3y - 2z = 5\\ 2x - y + az = 1 \end{cases}$$

Ex 1.5 (Solvability of parameter-dependent systems)

Determine the values of h for which the following matrices are the augmented matrices of a consistent linear system. (A linear system is called *consistent* if it has at least one solution. It is *inconsistent* if there exists no solution.)

(a)
$$\begin{pmatrix} 1 & -3 & h \\ -2 & 6 & -5 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & h & 4 \\ 3 & 6 & 8 \end{pmatrix}$.

Ex 1.6 (Linear combinations)

a) For the vectors
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 11 \\ 16 \\ 21 \end{pmatrix}$, find $l, m \in \mathbb{R}$ such that $\mathbf{c} = l\mathbf{a} + m\mathbf{b}$.

b) Find all
$$a \in \mathbb{R}$$
 such that $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \in \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix}, \begin{pmatrix} a \\ 1 \\ 2 \end{pmatrix} \right\}$.

Ex 1.7 (Linearity of linear systems)

Let

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n &= b_1 \\ \vdots & &\vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= b_m \end{cases}$$

be a general linear system.

- a) Show that if (s_1, \ldots, s_n) is a solution for the right-hand side (b_1, \ldots, b_m) and $\lambda \in \mathbb{R}$ is a real number, then $(\lambda s_1, \ldots, \lambda s_n)$ is a solution for the right-hand side $(\lambda b_1, \ldots, \lambda b_m)$.
- b) Show that if (s_1, \ldots, s_n) is a solution for the right-hand side (b_1, \ldots, b_m) and (t_1, \ldots, t_n) is a solution for the right-hand side (c_1, \ldots, c_m) , then $(s_1 + t_1, \ldots, s_n + t_n)$ is a solution for the right-hand side $(b_1 + c_1, \ldots, b_m + c_m)$.

Remark: i) From a formal perspective, these two properties are the definition of a linear system.

ii) This exercise requires an rigorous proof.

Ex 1.8 (True/False with justification)

Determine if the following statements are true or false. Justify your answer, either with a proof or a counterexample.

- 1. If $u \in \text{Span}\{v_1, \dots, v_n\}$, then $v_1 \in \text{Span}\{u, v_2, \dots, v_n\}$.
- 2. For $u, v \in \mathbb{R}^3$ with $u \neq v$, Span $\{u, v\}$ is always a plane.

Ex 1.9 (Multiple choice and True/False questions)

a) Multiple Choice: Let R be the reduced echelon form of the matrix

$$\left(\begin{array}{cccc}
1 & 2 & -1 & -1 \\
3 & 1 & 2 & -2 \\
2 & 3 & -1 & -3
\end{array}\right)$$

and denote by r_{ij} its entry located on the row i and column j. Then

(A)
$$r_{13} = -2$$
 (B) $r_{13} = -1$ (C) $r_{13} = 0$ (D) $r_{13} = 1$.

- b) Multiple Choice: For each of the following statements, decide whether it always must be true or if it can be false.
 - (i) If the augmented matrix of a linear system has a row of the form $(0 \ 0 \ 0 \ 4 \ 0)$, then there exists no solution.
 - (ii) When a linear system has free variables, then there exist infinitely many solutions.
 - (iii) If v_1, \ldots, v_k are vectors in \mathbb{R}^n , then $0 \in \text{Span}\{v_1, \ldots, v_k\}$, where $0 \in \mathbb{R}^n$.
 - (iv) A linear system with right-hand side $b_1 = \ldots = b_m = 0$ always has a solution.
- c) True/False: Every matrix can be brought into echelon form and that echelon form is unique.
- d) True/False: Every system of linear equations with more unknowns than equations must have: (i) no solutions (ii) infinitely many solutions (iii) both are possible.