

MATH-111(en)

Fall 2024 Annina Iseli

Linear Algebra

Homework 12

Ex 12.1 (Diagonalizability)

- a. Let A be a 3×3 matrix satisfying $A^4 = I_3$. Can 0 be an eigenvalue of A?
- b. Let A be a 3×3 with characteristic polynomial equal to $\chi_A(\lambda) = (\lambda 1)^2(\lambda + 1)$. Which of the following statements is true?
 - \square A must be diagnoalizable.
 - $\square \ \sigma(A) = \{-1, 1\}$
 - \square A cannot be diagonalizable.
 - \square In case A is diagonalizable, then there exist linearly independent vectors $v_1, v_2 \in \mathbb{R}^2$ each satisfying $Av_i = -v_i$.

Ex 12.2 (Inner product calculations)

Let

$$u = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}, \quad v = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}.$$

- a) Calculate $u \cdot u$, $v \cdot v$, $u \cdot v$, ||u||, and ||v||.
- b) Normalize u and v (i.e., find a unit vector with the same direction).
- c) Find the distance between u and v, and find the cosine of the angle between them.
- d) Find a basis of the space orthogonal to the plane spanned by u and v.

Ex 12.3 (An orthogonal basis)

Let

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\}, \quad u = \begin{pmatrix} 10 \\ 4 \\ 3 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}.$$

Show that \mathcal{B} is an orthogonal basis of \mathbb{R}^3 and determine $[u]_{\mathcal{B}}$ and $[v]_{\mathcal{B}}$, i.e. represent them in the basis \mathcal{B} .

Ex 12.4 (Another orthogonal basis)

Consider the vectors

$$u = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}, \quad v = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \quad w = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \quad x = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}.$$

- (a) Show that $\{u, v, w\}$ is an orthogonal basis of \mathbb{R}^3 .
- (b) Write the vector x as a linear combination of u, v and w.

Ex 12.5 (Properties of the orthogonal complement)

Let $W \subset \mathbb{R}^n$ be a subspace and W^{\perp} be its orthogonal complement. Show the following statements:

- Lemma 6.2:
 - (i) W^{\perp} is a subspace of \mathbb{R}^n . Moreover, $W \cap W^{\perp} = \{0\}$.
 - (ii) If \mathcal{B} spans W, then $W^{\perp} = \{ z \in \mathbb{R}^n : z \cdot b = 0 \mid \forall b \in \mathcal{B} \}.$
- Theorem 6.4: $\dim(W^{\perp}) = n \dim(W)$.

Hint: Let $b_1, ..., b_k$ be a basis of W and M the matrix whose rows are the b_i . Check that $W^{\perp} = \text{Ker}(M)$ and use Theorem 6.3.

Ex 12.6 (F^TF vs. FF^T for matrices with orthogonal columns)

Consider the matrix

$$F = \begin{pmatrix} 1 & 2 \\ -4 & 1/2 \end{pmatrix}.$$

Compute F^TF and FF^T . Are these two matrices equal?

Ex 12.7 (Orthogonality and projections) Prove the following statements about orthogonality and projections:

- (i) Every orthogonal set that does not contain the zero vector is independent. (This implies that in particular orthonormal sets are independent.)
- (ii) The orthogonal projection from \mathbb{R}^n onto a linear subspace $W \subset \mathbb{R}^n$ is a linear map.

Ex 12.8 (Projection onto a subspace)

Let

$$u = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Determine the orthogonal projection $\operatorname{proj}_W(u)$ of u onto the subspace W spanned by v_1, v_2 . Give it both in the basis $\mathcal{B} = \{v_1, v_2\}$ of W and in the standard basis of \mathbb{R}^3 .

Ex 12.9 (The row space and the kernel)

Consider an $m \times n$ matrix A.

- a) Prove that every vector x in \mathbb{R}^n can be written uniquely as x = p + u where p belongs to Row(A) and u belongs to Ker(A).
- b) Afterwards, show that if the equation Ax = b is consistent, then there is a unique p in Row(A) such that Ap = b.

Hint: For uniqueness, use Lemma 6.2 (b).

Ex 12.10 (Closest point in a column space)

Let A be the following matrix

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 1. Show that the columns of A are an orthogonal set.
- 2. Write U, the matrix made of the normalized columns vectors of A.
- 3. Find the closest point to $y = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ in Col(U) and the distance from $b = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$ to Col(U).

Ex 12.11 (Distance to different subspaces)

Let

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}.$$

Compute the distance from u to the line spanned by v_1 , and the distance from u to the plane spanned by v_1 and v_2 .

Ex 12.12 (Multiple choice and True/False questions)

- a) Let $A \in \mathbb{R}^{3\times 3}$. Which of the following sets of eigenvalues is possible?
 - (A) $\{1, 1+i, 2-i\}$, (B) $\{1, 2, 4i\}$, (C) $\{0, 3-i, 3+i\}$, (D) $\{i, 3-i, 3+i\}$.
- b) Decide whether the following statements are always true or if they can be false.
 - (i) Let $u, v, w \in \mathbb{R}^n$. If $u \cdot v = 0$ and $v \cdot w = 0$, then $u \cdot w \neq 0$.
- (ii) Let $u, v \in \mathbb{R}^n$. If the distance between u and v equals the distance between u and -v, then u and v are orthogonal.
- (iii) If $A \in \mathbb{R}^{n \times n}$, then $\operatorname{Col}(A) = \operatorname{Ker}(A)^{\perp}$.
- (iv) Let W be a subspace of \mathbb{R}^n . If x is orthogonal to every element of a basis for W, then $x \in W^{\perp}$.
- (v) If $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^n$, then $\|\lambda x\| = \lambda \|x\|$.
- (vi) The orthogonal projection of u onto v is the same as the orthogonal projection of u onto av for any $a \neq 0$.
- (vii) If W is a subspace of \mathbb{R}^n and $u \in W$, then $\text{proj}_W(u) = u$.
- (viii) Let A be an $n \times n$ matrix. The columns of A form an orthonormal basis of \mathbb{R}^n if and only if $\det(A) = 1$.
 - (ix) If $A^T A = I$, then A must be square.
 - (x) A square matrix has orthonormal columns if and only if it has orthonormal rows.
 - (xi) If the vectors in an orthogonal set of nonzero vectors are normalized, then some of the new vectors may not be orthogonal.
- (xii) A matrix with orthonormal columns is an orthogonal matrix.
- (xiii) For each $y \in \mathbb{R}^n$ and each subspace W of \mathbb{R}^n , the vector $y \operatorname{proj}_W y$ is orthogonal to W.
- (xiv) If the columns of an $n \times p$ matrix U are orthonormal, then UU^Ty is the orthogonal projection of y onto the column space of U.