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SOLUTIONS for Homework 5

Do NOT use determinants to solve the problems on this Homework. Next weeks exercises will
be full of problems about determinants. This week, I want you to practice other methods.

Ex 5.1 (Elementary matrix or not?)
Which of the following matrices are elementary matrices and what elementary operations do
they represent?

A =

1 0 0
2 1 0
0 0 1

 , B =

(
0 1
1 0

)
, C =

1 1 0
0 1 0
0 1 1

 , D =

1 0 0
0 0 0
0 0 1


Hint: Try either (or both) of the following strategies: (1) compare each matrix with the definitions

of the three types of elementary matrices that we have seen in class; (2) Compute the matrix-matrix

product of each of the matrix with another matrix.

Solution:
Since matrix-multiplication acts columnwise in the sense that AB = (AB1 . . . ABn) it suffices
to check the effect on general vectors. Let x ∈ R3. Then a direct computation shows that

Ax =

 x1

2x1 + x2

x3


Thus A adds 2-times the first row to the second row and therefore it is an elementary matrix.
For y ∈ R2 we obtain

By =

(
y2
y1

)
.

Thus B exchanges the first and the second row and therefore it is an elementary matrix.
Again for x ∈ R3 we see that

Cx =

x1 + x2

x2

x2 + x3


and thus C adds the second row both to the first and the third row. In particular, it is not an
elementary operation.
For the last matrix it suffices to note that De2 = 0, so that D is not invertible and thus cannot
be an elementary matrix (it corresponds to multiplying the second row by 0, which is not an
elementary operation).



Ex 5.2 (Different methods for computing the inverse matrix)

Let A =

(
1 2
3 4

)
. Compute A−1 using

{
(a) the formula for the inverse of a 2× 2 matrix,

(b) row reduction.

Solution:

(a) A−1 =

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
=

1

1 · 4− 2 · 3

(
4 −2
−3 1

)
=

(
−2 1
3
2

−1
2

)

(b)
(

1 2 1 0
3 4 0 1

)
→

(
1 2 1 0
0 −2 −3 1

)
→

(
1 2 1 0
0 1 3

2
−1

2

)
→

(
1 0 −2 1
0 1 3

2
−1

2

)
So again A−1 =

(
−2 1
3
2

−1
2

)
.

Ex 5.3 (More inverse matrix calculations)

Compute the inverses of the following matrices:

(a)

(
1 2
−1 1

)
(b)

 1 1 2
−1 0 1
1 −2 1

 (c)


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1


Solution:

(a) By the formula for 2× 2-matrices we have(
1 2
−1 1

)−1

=
1

3

(
1 −2
1 1

)
=

(
1
3

−2
3

1
3

1
3

)
(b) We use row reduction to find the inverse: 1 1 2 1 0 0

−1 0 1 0 1 0
1 −2 1 0 0 1

 −→

 1 1 2 1 0 0
0 1 3 1 1 0
0 −3 −1 −1 0 1

 −→

 1 1 2 1 0 0
0 1 3 1 1 0
0 0 8 2 3 1


−→

 1 1 2 1 0 0
0 1 3 1 1 0
0 0 1 2

8
3
8

1
8

 −→

 1 0 −1 0 −1 0
0 1 3 1 1 0
0 0 1 2

8
3
8

1
8

 −→

 1 0 0 2
8

−5
8

1
8

0 1 0 2
8

−1
8

−3
8

0 0 1 2
8

3
8

1
8


=⇒

 1 1 2
−1 0 1
1 −2 1

−1

=
1

8

2 −5 1
2 −1 −3
2 3 1


(c) Again we use row reduction:

1 0 0 0 1 0 0 0
2 1 0 0 0 1 0 0
3 2 1 0 0 0 1 0
4 3 2 1 0 0 0 1

 −→


1 0 0 0 1 0 0 0
0 1 0 0 −2 1 0 0
0 2 1 0 −3 0 1 0
0 3 2 1 −4 0 0 1

 −→


1 0 0 0 1 0 0 0
0 1 0 0 −2 1 0 0
0 0 1 0 1 −2 1 0
0 0 2 1 2 −3 0 1



−→


1 0 0 0 1 0 0 0
0 1 0 0 −2 1 0 0
0 0 1 0 1 −2 1 0
0 0 0 1 0 1 −2 1

 =⇒


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1


−1

=


1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1





Ex 5.4 (Determining invertibility)

Determine if the following matrices are invertible or not:

(a)

 1 2 3 4
−1 1 1 −1
0 1 0 1

 (b)


1 0 1 2
2 2 0 −1
3 0 3 1
0 0 1 2

 (c)


0 2 3 0
1 0 0 1
0 2 2 −4
2 1 1 0


Solution:

The matrix in (a) is not invertible because it is not a square matrix.
For the other two we will have to do row reduction, and since the question does not ask for the
inverse, we can leave out the right side of the augmented matrix, and stop at the echelon form.

(b)


1 0 1 2
2 2 0 −1
3 0 3 1
0 0 1 2

 −→


1 0 1 2
0 2 −2 −5
0 0 0 −5
0 0 1 2

 −→


1 0 1 2
0 2 −2 −5
0 0 1 2
0 0 0 −5


From this echelon form we can see that the matrix is invertible since it has 4 pivot elements.

(c)


0 2 3 0
1 0 0 1
0 2 2 −4
2 1 1 0

 −→


1 0 0 1
0 2 3 0
0 2 2 −4
2 1 1 0

 −→


1 0 0 1
0 2 3 0
0 2 2 −4
0 1 1 −2



−→


1 0 0 1
0 1 1 −2
0 2 3 0
0 2 2 −4

 −→


1 0 0 1
0 1 1 −2
0 0 1 4
0 0 0 0


Here we see from the echelon form that the matrix is not invertible, because it just has 3 pivot
elements.

Ex 5.5 (Inverting a linear transformation)

Let T : R3 → R3 be the following linear transformation:

T (x) =

 x1 + 2x2

2x1 − 3x3

x2 + x3

 .

Prove that T is invertible and give a formula that defines the inverse transformation T−1 of T .

Solution:

We will invert the matrix corresponding to T , as usual with row reduction: 1 2 0 1 0 0
2 0 −3 0 1 0
0 1 1 0 0 1

 −→

 1 2 0 1 0 0
0 −4 −3 −2 1 0
0 1 1 0 0 1

 −→

 1 2 0 1 0 0
0 1 1 0 0 1
0 −4 −3 −2 1 0



−→

 1 2 0 1 0 0
0 1 1 0 0 1
0 0 1 −2 1 4

 −→

 1 2 0 1 0 0
0 1 0 2 −1 −3
0 0 1 −2 1 4

 −→

 1 0 0 −3 2 6
0 1 0 2 −1 −3
0 0 1 −2 1 4





As we were able to reach the identity matrix on the left-hand side by row transformations, it
follows that T is invertible and that the left-hand side is the matrix of the inverse transformation
T−1. So,

T−1(y) =

−3 2 6
2 −1 −3
−2 1 4

y1
y2
y3

 =

−3y1 + 2y2 + 6y3
2y1 − y2 − 3y3
−2y1 + y2 + 4y3

 .

As a quick partial sanity check, let’s compute the first entry of S(T (x)):

T−1(T (x))1 = −3(x1+2x2)+2(2x1−3x3)+6(x2+x3) = (−3+4)x1+(−6+6)x2+(−6+6)x3 = x1.

Ex 5.6 (Non-invertible matrices whose product is the identity matrix)

Find non-square matrices A and B such that AB = In for some n ∈ N but A is not invertible.

Solution:
We can take for instance

A =

(
1 1 0
0 1 1

)
and B =

1 0
0 0
0 1

 .

Then

AB =

(
1 1 0
0 1 1

)1 0
0 0
0 1

 =

(
1 0
0 1

)
= I2.

If A were invertible, BA would also be an identity matrix, but we have

BA =

1 0
0 0
0 1

(
1 1 0
0 1 1

)
=

1 1 0
0 0 0
0 1 1

 ̸= I3.

Of course, we also know right away that A is not invertible from the fact that it is not a square
matrix.

Ex 5.7 (Invertibility of factors of an invertible matrix)

Show that if A and B are n×n matrices and AB is invertible, then A and B are also invertible.

Solution:
If AB is invertible, then there is a C such that ABC = I. But then AD = I for D = BC,
which by the Invertible Matrix Theorem implies that A is invertible. In the same way we have
(CA)B = I, which implies that B is invertible.

Ex 5.8 (Invertibility of elementary matrices)
a) Let Pij ∈ Rm×m be an elementary matrix that interchanges the ith and the jth row of a
matrix. Verify that P−1

ij = Pij.

b) Let Di(λ) ∈ Rm×m be an elementary matrix that multiplies the ith row of a matrix by a
scalar λ ̸= 0. Verify that Di(λ)

−1 = Di(λ
−1).

c) Let Lij(λ) be an elementary matrix that adds λ times the ith row to the jth row. Verify
that Lij(λ)

−1 = Lij(−λ).



Hint: In all cases, calculate the claimed inverse times the matrix times Im using the effect the

corresponding matrices have.

Solution:
a) Since PijIm yields the identity matrix with the ith and the j row interchanged, we have
PijPij = PijPijIm = Im as the change is undone by the second multiplication with Pij. From
the Invertible Matrix Theorem we deduce that Pij is invertible with P−1

ij = Pij.

b) Here the matrix Di(λ
−1) acts by multiplying the ith row by the inverse of λ. Since Di(λ)

multiplies the same row by λ, it holds that Di(λ
−1)Di(λ)Im = Im and again the claim follows

from the Invertible Matrix Theorem.

c) The reason is similar. The matrix Lij(λ) only affects the jth row and by definition the
jth row of Lij(λ)Im is given by eTj + λeTi (here the transpose just means that we consider row
vectors). By the same reasoning the jth row of Lij(−λ)Lij(λ)Im is (eTj +λeTi )−λeTi = ej since
the ith row of Lij(λ)Im is still eTi . Hence Lij(−λ)Lij(λ)Im = Im and the claim follows from the
Invertible Matrix Theorem.

Ex 5.9 (Multiple choice and True/False questions)

a) Let A =

1 0 2
3 1 0
0 2 2

. Then (A−1)23 equals: (i) −6/14, (i) −2/14, (ii) 2/14, (iv) 6/14

b) Decide whether the following statements are always true or if they can be false.

(i) If A and B are invertible and of the same size, then A+B is also invertible.

(ii) If AB = AC, then B = C.

(iii) If A is invertible and AB = AC, then B = C.

(iv) Every upper triangular matrix is in echelon form.

In the following, let A be a square matrix with n rows and n columns.

(v) If the equation Ax = b has at least one solution for each b ∈ Rn, then the solution is
unique for each b.

(vi) If the columns of A are linearly independent, then they span Rn.

(vii) If the columns of A span Rn, then they are linearly independent.

(viii) If the columns of A are linearly independent, then its rows are also linearly independent.

(ix) If n = 2, A =

(
a b
c d

)
and ab− cd ̸= 0, then A is invertible.

(x) If A is invertible, then elementary row operations that reduce A to the identity In also
reduce A−1 to In.

(xi) If there is an n× n matrix such that AD = I, then there is also an n× n matrix such
that CA = I.



Solution:

a) The answer is (iv). Note that that in order to know (A−1)23, it suffices to know the third
column of A−1, which is given by A−1e3. Hence we can save a little work by doing the
calculation as follows (and once you understand this, you can leave out the dots). 1 0 2 · · 0

3 1 0 · · 0
0 2 2 · · 1

 −→

 1 0 2 · · 0
0 1 −6 · · 0
0 2 2 · · 1

 −→

 1 0 2 · · 0
0 1 −6 · · 0
0 0 14 · · 1



−→

 1 0 2 · · 0
0 1 −6 · · 0
0 0 1 · · 1

14

 −→

 1 0 0 · · − 2
14

0 1 0 · · 6
14

0 0 1 · · 1
14

 =⇒ (A−1)23 = 6/14.

b) (i) False. Take A = I2022 and B = −I2022, then A and B are invertible, but A + B = 0
is not.

(ii) False. Here is a counterexample:

A =

(
1 0
0 0

)
, B =

(
0 0
0 2

)
, C =

(
0 0
0 3

)
.

(iii) True. Multiplying both sides of the equation AB = AC by A−1 on the left gives

A−1AB = A−1AC ⇒ IB = IC ⇒ B = C.

(iv) False.

(
0 1
0 1

)
is an upper triangular matrix, but is not in echelon form.

(v) True. The if-statement is that (the linear transformation corresponding to) A is onto,
the then-statement is that it is one-to-one. By the Invertible Matrix Theorem, these
two statements are equivalent for square matrices.

(vi) True. These are also two equivalent statements by the Invertible Matrix Theorem.
(One can also see it directly by noting that both are equivalent to having n pivots in
the echelon form.)

(vii) True. As mentioned in the previous part, these statements are equivalent by the
Invertible Matrix Theorem.

(viii) True. The rows of A are the columns of AT . Because A is a square matrix and
its columns are linearly independent, A is invertible, again by the Invertible Matrix
Theorem. Then AT is also invertible, so its columns, i.e. rows of A, are also linearly
independent.

(ix) False. If A =

(
1 1
0 0

)
, then ab − cd = 1, but A is not invertible. (Note that ab − cd

is not equal to ad− bc in general, where the latter does “detect” invertibility.)

(x) False. In general, we need to apply the inverses of the row operations for A in the
reverse order in order to reduce A−1 to In.

(xi) True. These two statements are equivalent by the Invertible Matrix Theorem.


