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Ex 9.1 (Column, row and kernels)
Find the dimensions of the column space, row space, and kernel of the following matrix.

B =


−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3



Solution:
We do row reduction:

−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

 −→


1 3 −5 1 5
−2 −5 8 0 −17
3 11 −19 7 1
1 7 −13 5 −3

 −→


1 3 −5 1 5
0 1 −2 2 −7
0 2 −4 4 −14
0 4 −8 4 −8



−→


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 0 0
0 0 0 −4 20

 −→


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0


Because the echelon form has three pivots, the column space has dimension 3. Because the
system Bx = 0 has two free variables, the kernel has dimension 2 (alternatively one can use
the rank theorem).
In the course we proved that the dimension of the row space equals the dimension of the column
space. Hence the row space is also three-dimensional.

Ex 9.2 (A subspace)
Find out the dimension of the subspace H defined as:

H =

x in R4 such that x =


a− 3b+ 6c
5a+ 4d

b− 2c− d
5d

 where a, b, c and d are real scalars

 .

Solution:
By definition, H is a subspace of R4 defined as Span{v1, v2, v3, v4} with:

v1 =


1
5
0
0

 , v2 =


−3
0
1
0

 , v3 =


6
0
−2
0

 and v4 =


0
4
−1
5

 .



One can see that v3 = −2v2, which yields that H = Span{v1, v2, v4}.
Then we check that those three vectors are linearly independent (you can for instance compute
an echelon form of the matrix having v1, v2 and v4 as columns and which has three pivot
columns), to deduce that H has dimension 3.

Ex 9.3 (Row equivalent matrices)
Consider

A =

 1 −4 9 −7
−1 2 −4 1
5 −6 10 7

 and B =

1 0 −1 5
0 −2 5 −6
0 0 0 0

 .

Show that the matrices A and B are row equivalent.
Deduce

• the rank of A and dimKerA

• a basis for each of the subspaces ColA, RowA, and KerA.

Solution:
We see that the reduced echelon forms of both matrices are the same, thus they are equivalent.
(Here it is faster to start row reduction with A and one obtains B after adding the first row to
the second one, then subtracting 5 times the first row from the third one and finally eliminating
the last row with the help of the new second row).
By looking at the matrix B one can notice that:

• There are two pivot columns which gives rankB = rankA = 2 (the rank is the number
of pivot columns). A basis of ColA is furthermore given by the first two columns of A,
which correspond to the pivot columns of its echelon form. By the rank theorem we find
dimKerA = n− rankA = 4− 2 = 2.

• As discussed in the first part, a basis of ColA is given by


 1
−1
5

 ,

−4
2
−6

.

As A and B are row equivalent, RowA = RowB and we know that the non-zero
rows of any echelon form form a basis for the row space. Hence a basis of RowA is


1
0
−1
5

 ,


0
−2
5
−6


.

The equation Ax = 0 is equivalent to Bx = 0. Using the parametric vector form for the

solution, we know that a basis of KerA is given for instance by




1
5/2
1
0

 ,


−5
−3
0
1


.

Ex 9.4 (Relating A and AT in terms of linear systems)
Consider a matrix A ∈ Rm×n. Among the spaces RowA, ColA, KerA, RowAT , ColAT and
KerAT , find out which are subspaces of Rn, and which are subspaces of Rm.
Then justify the following statements:

1. dimRowA+ dimKerA = n (number of columns in A).



2. dimColA+ dimKerAT = m (number of rows in A).

3. Ax = b has a solution for every b in Rm if and only if ATx = 0 only admits the trivial
solution.

Solution:
RowA = ColAT and KerA are subspaces of Rn; ColA = RowAT and KerAT are subspaces of
Rm.

1. We know that dimRowA = dimColA = rank(A) so from the rank theorem: dimRowA+
dimKerA = n.

2. All you have to do is to write the previous statement replacing A by AT in it, and note
that RowAT = ColA.

3. Saying that Ax = b always has a solution is equivalent to affirm that dimColA = m,
which from the previous point gives dimKerAT = 0. This last statement is true if and
only if the equation ATx = 0 only admits the trivial solution.

Ex 9.5 (Change of basis matrices)
Let E be the standard basis of R3, and consider the following basis:

B =


1
2
0

 ,

2
0
1

 ,

 0
−3
1

 .

Find the change of basis matrices P
E←B

and P
B←E

.

Solution:
According to the lecture the matrix P

E←B
is the matrix with columns [b1]E , [b2]E , [b3]E , where

b1, b2 and b3 are the elements of the basis B. Hence we need to find the standard coordinates
of the basis vectors in B. Without calculation, we see have immediately that

P
E←B

=

1 2 0
2 0 −3
0 1 1

 .

As seen in the lecture, the matrix P
B←E

is the inverse of P
E←B

. Let us compute the inverse:

 1 2 0 1 0 0
2 0 −3 0 1 0
0 1 1 0 0 1

 −→

 1 2 0 1 0 0
0 −4 −3 −2 1 0
0 1 1 0 0 1

 −→

 1 2 0 1 0 0
0 1 1 0 0 1
0 −4 −3 −2 1 0



−→

 1 2 0 1 0 0
0 1 1 0 0 1
0 0 1 −2 1 4

 −→

 1 2 0 1 0 0
0 1 0 2 −1 −3
0 0 1 −2 1 4

 −→

 1 0 0 −3 2 6
0 1 0 2 −1 −3
0 0 1 −2 1 4





So P
B←E

=

−3 2 6
2 −1 −3
−2 1 4

.

Ex 9.6 (Changing coordinates)
Consider the following bases of R3:

B =


1
1
0

 ,

0
1
0

 ,

0
0
1

 , C =


1
2
0

 ,

3
2
0

 ,

0
0
1

 .

Find the change of basis matrix P
C←B

Then determine [v]C for [v]B =

1
1
1

 .

Solution:
As discussed in the course, the way to compute this is with the following row reduction (where
B and C are the matrices with the columns from B and C in the given order):

( C | B ) −→
(
I | P

C←B

)
.

Let us see briefly recall why. We want the matrix P such that [w]C = P · [w]B for every vector
w. In particular, it should work for the vectors b1, b2, b3 of B. Note that [bi]B = ei, and that
P · ei = pi, where pi is the i-th column of P . So for instance, P should satisfy

[b1]C = P · [b1]B = P · e1 = p1.

So we want the vectors pi such that

[b1]C = p1, [b2]C = p2, [b3]C = p3.

In other words, we want to represent each vector bi in the basis C. Interpreting each bi as its
coordinates in the standard basis and C as the change-of-coordinates matrix PC, we see that pi
is the solution of Cx = bi. We can solve these three systems at the same time by row reducing
(C|B) → (I|P ).
So, we do that reduction for the given bases B and C: 1 3 0 1 0 0

2 2 0 1 1 0
0 0 1 0 0 1

 −→

 1 3 0 1 0 0
0 −4 0 −1 1 0
0 0 1 0 0 1

 −→

 1 3 0 1 0 0
0 1 0 1

4
−1

4
0

0 0 1 0 0 1



−→

 1 0 0 1
4

3
4

0
0 1 0 1

4
−1

4
0

0 0 1 0 0 1

 ⇒ P
C←B

=

1
4

3
4

0
1
4

−1
4

0
0 0 1

 .

To get [v]C we just have to multiply by the obtained change of basis matrix:

[v]C = P
C←B

· [v]B =

1
4

3
4

0
1
4

−1
4

0
0 0 1

1
1
1

 =

1
0
1

 .

To verify the result, we can compare what both representations would give in the standard
basis:

v = 1 · b1 + 1 · b2 + 1 · b3 =

1
2
1

 = 1 · c1 + 0 · c2 + 1 · c3.



Ex 9.7 (More basis changes)
Let B = {b1, b2} and C = {c1, c2} be two bases of a vector space V . Assume that b1 = 6c1− 2c2
and b2 = 9c1 − 4c2.

(a) Find the change of basis matrix P
C←B

(b) Find [x]C for x = −3b1 + 2b2. Use the result from (a).

Let A = {a1, a2} and D = {d1, d2} be two bases of R2.

a1 =

(
7
5

)
, a2 =

(
−3
−1

)
, d1 =

(
1
−5

)
, d2 =

(
−2
2

)
(c) Find the change of basis matrix P

D←A

(d) Find the change of basis matrix P
A←D

Solution:

(a) The change of basis B → C matrix has in its columns the coordinates of the basis vectors
of the basis B, in the basis C:

P
C←B

=

(
6 9
−2 −4

)

(b) The equation x = −3b1 + 2b2 implies that [x]B =

(
−3
2

)
. To find [x]C, all you have to do

is to use the change of basis matrix:

[x]C =

(
6 9
−2 −4

)
[x]B =

(
0
−2

)
(c) To find the change of basisA → D matrix one needs to write the coordinates of the vectors

a1 and a2 in the basis D. That is find the real numbers x1 and x2 such as a1 = x1d1+x2d2
and the real numbers y1 and y2 such as a2 = y1d1 + y2d2.

In order to find those, one can simply solve the two systems:

[d1 d2]

(
x1

x2

)
= a1 and [d1 d2]

(
y1
y2

)
= a2

The solution is x1 = −3, x2 = −5, y1 = 1, y2 = 2 which gives:

P
D←A

=

(
−3 1
−5 2

)
(d) To find P

A←D
we need to invert P

D←A
:

P
A←D

=

(
−2 1
−5 3

)



Ex 9.8 (Basis change for polynomials)
In P2, find out the change of base matrix from the basis B = {1− 2t+ t2, 3− 5t+4t2, 2t+3t2}
to the standard basis C = {1, t, t2}. Then write out the coordinates of the vector x(t) = −1+2t
in the basis B.

Solution:
The change of basis B → C matrix is the matrix having for columns the coordinates of the basis
vectors of B in the standard basis C:

P
C←B

=

 1 3 0
−2 −5 2
1 4 3


The coordinates of the vector x(t) = −1 + 2t in the standard basis are: [x]C =

−1
2
0

.

The coordinates [x]B of the vector in the basis B satisfy:

 1 3 0
−2 −5 2
1 4 3

 [x]B = [x]C.

All you have to do is to solve the linear system corresponding to the augmented matrix 1 3 0 −1
−2 −5 2 2
1 4 3 0

 to finally find [x]B =

 5
−2
1

.

Ex 9.9 (The trace of a matrix as linear map)
Let A ∈ Rn×n be a square matrix. We define the trace of A by Tr(A) = a11 + . . . + ann, i.e.,
the sum of all diagonal elements.

a) Show that the map Tr : Rn×n → R is a linear map.

b) Consider the case n = 2 and the ordered basis

B =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

while on R we consider the standard basis Q = {1}. Compute the matrix B such that
[Tr(A)]Q = B[A]B for all A ∈ R2×2.

Solution:
a) Let A,B ∈ Rn×n and λ ∈ R. According to the rules for matrix calculus the coefficients of
the matrix λA+B are given by λaij + bij . Therefore we have

Tr(λA+B) =
n∑

i=1

λaii + bii = λ
n∑

i=1

aii +
n∑

i=1

bii = λTr(A) + Tr(B).

Thus the taking the trace is a linear operation.

b) According to the lecture, we have to compute the Q-coordinates of Tr(b) for all elements in
the basis B. In this setting the Q-coordinates are just the values of trace. The first matrix has
trace 1, the second 0, the third 0 and the last one 1. Therefore B =

(
1 0 0 1

)
.



Ex 9.10 (Finding the matrix of a linear transformation - warm up)

(a) Let T : P2 → P3 be defined by

T (a0 + a1x+ a2x
2) = a0 + a2 + (2a1 + a2)x+ (2a1 + a2)x

3.

Find a basis for Ker(T ). Moreover: is p(x) = 5x2 − 5 in Ran(T )? Is it in Ker(T )?

(b) Let T : P3 → R2×3 be defined by

T (a0 + a1x+ a2x
2 + a3x

3) =

(
a1 + a2 a2 + a3 a3
a2 + a3 0 a0

)
Find the matrix A of T relative to the standard bases of P3 and R2×3. Then find a basis for
Ker(A), Col(A) and Row(A). Also find a basis for Ker(T ) and Ran(T ).

Solution:

(a) The matrix of T with respect to the standard bases B = {1, x, x2} for P2 and C =
{1, x, x2, x3} for P3 is:

A =


1 0 1
0 2 1
0 0 0
0 2 1


You can either find this matrix by computing its columns which are:

[T (1)]C = [1]C =


1
0
0
0

 , [T (x)]C = [2x+ 2x3]C =


0
2
0
2

 , [T (x2)]C = [1 + x+ x3]C =


1
1
0
1


Or, you can find the matrix A by solving the equation [T (a0 + a1x+ a2x

2 + a3x
3)]C = A([a0 +

a1x+ a2x
2 + a3x

3]B) for A. Which means finding a 3× 2 matrix A such that
a0 + a2
2a1 + a3

0
2a1 + a3

 = A

a0
a1
a2

 .

(It is not hard to come up with the correct matrix in this easy example.)

Once you have A, compute its reduced row echelon form, which is

Ã =


1 0 1
0 1 1

2

0 0 0
0 0 0


So, solving the homogenous equation Ax = 0, we find Ker(A) =


−λ
−λ

2

λ

 : λ ∈ R

 and a

basis of Ker(A) is BKer(A) =


−1
−1

2

1

.



Finally, for [p(x)]B =

−1
−1

2

1

 we have p(x) = −1− 1
2
x+ x2.

Hence BKer(T ) = {−1− 1
2
x+ x2} is a basis of Ker(T )

By directly computing T (5x2 − 5) = 5x3 + 5x ̸= 0, we conclude that 5x2 − 5 /∈ Ker(T ).

By observing that the coefficient in front of x2 in T (p(x)) is always 0, there cannot exists a
p(x) ∈ P2 such that T (p(x)) = 5x2 − 5. Thus, 5x2 − 5 /∈ Ran(T ).

(b) The matrix of T with respect to the standard basis B = {1, x, x2, x3} of P3 and the standard
basis

C =

{(
1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)}
of R2×3 is:

A =


0 1 1 0
0 0 1 1
0 0 0 1
0 0 1 1
0 0 0 0
1 0 0 0


(You can find A by either method mentioned in part (a) above.)

Once you have A, compute its reduced row echelon form, which is

Ã =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


So we have a bases for Ker(A), Col(A) and Row(A): BKer(A) = ∅,

BCol(A) =




0
0
0
0
0
1

 ,


1
0
0
0
0
0

 ,


1
1
0
1
0
0

 ,


0
1
1
1
0
0




and BRow(A) =

{(
0 1 1 0

)
,
(
0 0 1 1

)
,
(
0 0 0 1

)
,
(
1 0 0 0

)}
.

And bases for Ker(T ) and Ran(T ) are:

BKer(T ) = ∅ (or, you could also say: Ker(T ) does not have a basis)

BRan(T ) =

{(
0 0 0
0 0 1

)
,

(
1 0 0
0 0 0

)
,

(
1 1 0
1 0 0

)
,

(
0 1 1
1 0 0

)}
.



Ex 9.11 (Finding the matrix of a linear transformation)

Let T : R2×2 → P5 be defined by

T

(
1 0
0 0

)
= 2x5 − 3x4 + 5x, T

(
0 1
0 0

)
= −x2 + x+ 1,

T

(
0 0
1 0

)
= −x2 + x+ 1, T

(
0 0
0 1

)
= −2x4 + x3 − x2 + 1

Find a basis for Ker(T ) and Ran(T ).

Solution Denote S for the standard basis of R2×2, namely

S =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

Inspired by the definition of T , we define the following basis for P5:

B = {p1(x), p2(x), p3(x), p4(x), p5(x), p6(x)}

where we define

p1(x) = 2x5 − 3x4 + 5x,

p2(x) = −x2 + x+ 1,

p3(x) = −2x4 + x3 − x2 + 1,

p4(x) = x3,

p5(x) = x,

p6(x) = 1.

Notice that we came up with this basis as follows: We observe that among the images of ele-
ments of S under T gives three independent polynomials. We choose these as the first three
elements of our basis p1, p2, p3. Then we add three more polynomials p4, p5, p6 that are as simple
as possible and that actually turn the whole collection p1, ..., p6 into a basis.

(Formal verification that B is actually a basis: identify P5 with R6 (via the standard basis),
then p1, ..., p6 are the columns of the the following matrix

0 1 1 0 0 1
5 1 0 0 1 0
0 −1 −1 0 0 0
0 0 1 1 0 0
−3 0 −2 0 0 0
2 0 0 0 0 0

 .

By reordering the columns, we can easily make the above matrix into an upper triangular ma-
trix with non-zero coefficients on the diagonal. Thus, the matrix has full rank (you can observe
this by either taking the determinant or making the matrix in to its RREF). Hence B is a basis
of P5.)

By the same method as the previous exercise, we find the matrix A corresponding to T with
respect to S and B is

A =


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .



(Note how our clever choice of basis automatically makes the matrix A be in RREF!)

Thus, the polynomials corresponding to the pivots A form a basis of Ran(T ), namely

BRan(T ) = {p1(x), p2(x), p3(x)}.

On the other hand, denoting x =

(
a b
c d

)
, by solving the homogeneous system A[x]S = 0, we

see that a = d = 0 and b = −c. Thus, we have BKer(T ) =

{(
0 1
−1 0

)}
.

Ex 9.12 (True/False questions)
In the following, let A be an m× n matrix and B, C bases of a vector space V . Decide whether
the following statements are always true or if they can be false.

(i) Row(A) = Col(AT ).

(ii) dimRow(A) = dimCol(A).

(iii) dimRow(A) + dimKer(A) = n.

(iv) There is a 6× 9 matrix B such that dimKer(B) = 2.

(v) If a set {v1, . . . , vp} spans a finite-dimensional vector space V and if T is a set of more
than p vectors in V , then T is linearly dependent.

(vi) The only three-dimensional subspace of R3 is R3 itself.

(vii) If B is any echelon form of A, and if B has three nonzero rows, then the first three rows
of A form a basis for RowA.

(viii) The dimension of the kernel of A is the number of columns of A that are not pivot columns.

(ix) The row space of AT is the same as the column space of A.

(x) The columns of the change-of-coordinates matrix P
C←B

are B-coordinate vectors of the

vectors in C.

(xi) If V = Rn and C is the standard basis V , then P
C←B

is the same as the change-of-coordinates

matrix PB introduced earlier.

Solution:

(i) True. The rows of A are the columns of AT .

(ii) True. Both are equal to the number of pivots in an echelon form of A.

(iii) True. This is essentially the rank theorem. (dimRow(A) equals the number of pivots in
an echelon form of A, and dimKer(A) equals the number of columns in an echelon form
that do not have a pivot (because each such column gives a free variable), so the sum of
these is the number of columns.)

(iv) False. By the rank theorem, we would have dimCol(B) = 9 − 2 = 7. But Col(B) is a
subspace of R6, which has dimension 6, and subspaces cannot have higher dimension than
the vector space they are in.

(v) True. Since V is spanned by p elements, a basis of, i.e. a maximal linearly independent
subset in V has at most p elements.



(vi) True. Given 3 linearly independent vectors in R3, the reduced echelon form of the ma-
trix A that has those vectors as columns will be the identity matrix, meaning that it is
invertible and hence in particular that its column space is all of R3.

(vii) False. In general, the first 3 rows of B form a basis for RowA in this situation.

(viii) True.

(ix) True. The rows of AT are the columns of A.

(x) False. The columns are C-coordinate vectors of the vectors in B.

(xi) True.


