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SOLUTIONS for Homework 2

Ex 2.1 (The weekly linear system)
Solve the following linear system and write the solution in parametric form.

x + 2y + 2t = 3
y + z − 2t = 0

x + 3y + z + t = 5
2x + 5y + z + 4t = 10

Solution :
We find the augmented matrix and then apply row reduction :

1 2 0 2 3
0 1 1 −2 0
1 3 1 1 5
2 5 1 4 10

 3)→3)−1)−→
4)→4)−2·1)


1 2 0 2 3
0 1 1 −2 0
0 1 1 −1 2
0 1 1 0 4

 3)→3)−2)−→
4)→4)−·2)


1 2 0 2 3
0 1 1 −2 0
0 0 0 1 2
0 0 0 2 4


4)→4)−2·3)−→


1 2 0 2 3
0 1 1 −2 0
0 0 0 1 2
0 0 0 0 0

 2)→2)+2·3)−→
1)→1)−2·3)


1 2 0 0 −1
0 1 1 0 4
0 0 0 1 2
0 0 0 0 0

 1)→1)−2·2)−→


1 0 −2 0 −9
0 1 1 0 4
0 0 0 1 2
0 0 0 0 0


This is the reduced echelon form. We find that t = 2, y = 4 − z and x = −9 + 2z. Hence we
obtain 

x
y
z
t

 =


−9 + 2z
4− z
z
2

 =


−9
4
0
2

+ λ


2

−1
1
0

 , λ ∈ R

as the solution in parametric vector form.

Ex 2.2 (On B(Ax) ̸= A(Bx))
We first observe that : If x ∈ Rn and A ∈ Rm×n, then Ax ∈ Rm is well-defined. If B ∈ Rp×m,
then the element B(Ax) ∈ Rp is well-defined.

a) Determine all values of m and p (depending on n) such that A(Bx) is also defined.

b) For n = 2, consider the matrices A =

(
1 1
0 0

)
and B =

(
1 0
1 0

)
. Show that for x =

(
1
0

)
it holds that B(Ax) ̸= A(Bx). Find all vectors x ∈ R2 such that B(Ax) = A(Bx).

Solution :
a) If x ∈ Rn and Bx is well-defined, we must have n = m. Moreover, if y = Bx ∈ Rp and Ay is
well-defined, we must have that p = n. Hence A(Bx) is defined if and only if m = p = n.

b) A direct computation based on the definition of the matrix-vector product yields that

Ax =

(
x1 + x2

0

)
, Bx =

(
x1

x1

)



and then

B(Ax) = B

(
x1 + x2

0

)
=

(
x1 + x2

x1 + x2

)
, A(Bx) = A

(
x1

x1

)
=

(
2x1

0

)
.

Thus these terms are equal if and only if(
2x1

0

)
=

(
x1 + x2

x1 + x2

)
⇐⇒

(
−x1 + x2

x1 + x2

)
=

(
0
0

)
.

This is a linear system with augmented matrix(
−1 1 0
1 1 0

)
−→

(
−1 1 0
0 2 0

)
−→

(
−1 0 0
0 2 0

)
,

so that x1 = 0 and x2 = 0. In particular, for x =

(
1
0

)
the terms are not equal and we found

that they only agree for x = 0.

Ex 2.3 (Conversion to parametric vector form)
Write all solutions to the linear systems from Problems 1, 2, and 3 from Homework 1 in
parametric vector form.

Solution :
When the solution is unique, it suffices to write the solution vector. Otherwise we perform the
method of course, writing the equations for the basic variables in a vector and separating terms.

1. (a) (
x
y

)
=

(
29
7
6
7

)
.

(b) x
y
z

 =

−46
−46
95

 .

(c) x
y
z

 = s ·

−4
5
1
5

1

+

 3
5
−2
5

0

where s ∈ R.

2. (a) 
w
x
y
z

 = s ·


0
1
0
1

+


7
5
2
5
1
5

0

where s ∈ R.

(b) No solution.

(c) x
y
z

 = s ·

2
1
0

+ t ·

−3
0
1

+

1
0
0

where s, t ∈ R.



3. (a) 
w
x
y
z

 = s ·


0
1
1
0

+ t ·


−1
−2
0
1

+


2
1
0
0

where s, t ∈ R.

(b) (
x
y

)
=

(
−1
1

)
.

Ex 2.4 (A system with a parameter)
For

A =

1 −1 −3
2 0 1
0 2 7

 , x =

x
y
z

 , b =

3
0
a

 ,

find an a such that Ax = b is consistent, and write the solution in this case in parametric
vector form.

Solution :
As usual, we apply row reduction to find the echelon form. 1 −1 −3 3

2 0 1 0
0 2 7 a

 −→

 1 −1 −3 3
0 2 7 −6
0 2 7 a

 −→

 1 −1 −3 3
0 2 7 −6
0 0 0 a+ 6


So this matrix equation has a solution if and only if a = −6. In this case : 1 −1 −3 3

0 2 7 −6
0 0 0 0

 −→

 1 −1 −3 3
0 1 7/2 −3
0 0 0 0

 −→

 1 0 1/2 0
0 1 7/2 −3
0 0 0 0


−→ z is free, x = −1

2
z, y = −3− 7

2
z.

Plugging this in, we get that the solution is

x
y
z

 =

 −1
2
z

−3− 7
2
z

z

 or in parametric vector form :

x
y
z

 == λ ·

−1/2
−7/2
1

+

 0
−3
0

 , λ ∈ R

Ex 2.5 (Consistency for all right-hand sides ?)
Let

A =

(
−3 1
6 −2

)
.

Is the equation Ax = b consistent for all choices of b ∈ R2 ? Determine the set of b ∈ R2 for
which the equation Ax = b is consistent.

Solution :

Let b =

(
b1
b2

)
. The augmented matrix of the system is equivalent to the row echelon matrix(

−3 1 b1
0 0 2b1 + b2

)



Thus the equation Ax = b is consistent only if 2b1+ b2 = 0, i.e., the set of b for which Ax = b
is consistent is {(

b1
b2

)
∈ R2

∣∣∣∣ 2b1 + b2 = 0

}
.

(This is the line passing through the origin and

(
1
−2

)
.) In particular, there exist b ∈ R2 for

which Ax = b is inconsistent, for instance b =

(
1
0

)
.

Ex 2.6 (Homogeneous and inhomogeneous systems)

Consider the two systems
x1 − 3x2 − 2x3 = 0

x2 − x3 = 0
−2x1 + 3x2 + 7x3 = 0


x1 − 3x2 − 2x3 = −5

x2 − x3 = 4
−2x1 + 3x2 + 7x3 = −2

.

For each of these systems, write the solution in its parametric vector form and give a geometric
description of the solution space. For example, say what “shape” it is and whether or not it
contains the origin.

Solution :
The reduced row echelon matrices corresponding to the systems are respectively 1 0 −5 0

0 1 −1 0
0 0 0 0

 and

 1 0 −5 7
0 1 −1 4
0 0 0 0

 .

In both cases, x3 is a free variable and the solutions arex1

x2

x3

 = s

5
1
1

 and

x1

x2

x3

 =

7
4
0

+ s

5
1
1

 .

Recall that the solution space of a system of linear equations in three variables (in case it is
not the empty set) always is a point, a line or a plane. It contains the origin if and only if the
system is homogeneous.

The solution to the first system corresponds to a line passing through the origin. The solution
of the second system corresponds to a line passing through the point (7, 4, 0) and parallel to
the first line.
Note that it actually suffices to consider the inhomogeneous system. The solution of the homo-
geneous system is given by the part involving the free variables.

Ex 2.7 (A homogeneous equation)

For the following matrix A, write the solution of Ax = 0 in its parametric vector form.

A =


1 6 0 8 −1 −2
0 0 1 −3 4 6
0 0 0 0 0 1
0 0 0 0 0 0

 .



Solution :
The row echelon form of the matrix A shows that there are 3 basic variables (x1, x3 and x6)
and 3 free variables (x2, x4 and x5), thus any solution may be written as a linear combination
in the following way : 

x1

x2

x3

x4

x5

x6

 = s


−6
1
0
0
0
0

+ t


−8
0
3
1
0
0

+ u


1
0
−4
0
1
0


Ex 2.8 (On homogeneous systems)
Recall that a system Ax = b is homogeneous if b = 0 (where 0 is the vector in which every
entry is zero). Determine if the following statements are true or false. Justify your answer.
(Justify means : if it is true explain/prove why ; if it is false, give a counterexample.)

1. If x is a solution to a homogeneous system, then 2x is also a solution.

2. If x is a solution to an inhomogeneous system, then 2x is also a solution.

3. If x is a solution of Ax = 0 and y is a solution of Ay = b, then v = x+ y is a solution
of Av = b.

4. If x is a solution of Ax = 0 and y is a solution of Ay = b where b ̸= 0, then v = 2x+3y
is a solution of Av = b.

Solution :

1. If x is a solution to a homogeneous system, then 2x is also a solution.
True : Write the system as Ax = 0. If x is a solution, so Ax = 0, then we also have
A(2x) = 2 · Ax = 2 · 0 = 0, so 2x is a solution.

2. If x is a solution to an inhomogeneous system, then 2x is also a solution.
False : Write the system as Ax = b. If x is a solution, so Ax = b, then we have
A(2x) = 2 ·Ax = 2b. Since the system is inhomogeneous, we have b ̸= 0, so A(2x) = 2b
implies that A(2x) = b does not hold, which means that 2x is not a solution of Ax = b.

3. If x is a solution of Ax = 0 and y is a solution of Ay = b, then v = x+ y is a solution
of Av = b.
True : We have Av = A(x+ y) = Ax+ Ay = 0 + b = b.

4. If x is a solution of Ax = 0 and y is a solution of Ay = b where b ̸= 0, then v = 2x+3y
is a solution of Av = b.
False : We have Av = A(2x+ 3y) = 2Ax+ 3Ay = 2 · 0 + 3 · b = 3 · b ̸= b.

Ex 2.9 (Two related systems)

Solve the following two systems of linear equations and write the solutions in parametric vector
form. What is the connection between the solution sets of the two systems ?

x+ y − 3z = 0
3x+ 7y − 13z = 0

x− y − z = 0


x+ y − 3z = 0

3x+ 7y − 13z = −4
x− y − z = 2



Solution :


x+ y − 3z = 0
3x+ 7y − 13z = 0
x− y − z = 0

−→

 1 1 −3 0
3 7 −13 0
1 −1 −1 0

 −→

 1 1 −3 0
0 4 −4 0
0 −2 2 0


−→

 1 1 −3 0
0 1 −1 0
0 0 0 0

 −→

 1 0 −2 0
0 1 −1 0
0 0 0 0

 −→ z free, x = 2z, y = z

parametric vector form :

x
y
z

 = z ·

2
1
1


Note that to solve the second system we use the same row reduction steps, but now with a
different last column.

x+ y − 3z = 0
3x+ 7y − 13z = −4
x− y − z = 2

−→

 1 1 −3 0
3 7 −13 −4
1 −1 −1 2

 −→

 1 1 −3 0
0 4 −4 −4
0 −2 2 2


−→

 1 1 −3 0
0 1 −1 −1
0 0 0 0

 −→

 1 0 −2 1
0 1 −1 −1
0 0 0 0

 −→ z free, x = 2z + 1, y = z − 1

parametric vector form :

x
y
z

 = z ·

2
1
1

+

 1
−1
0


The connection between the two solution sets is that the solutions of the second system are

exactly the solutions of the first system plus the vector

 1
−1
0

. This has to be the case since

the systems only differ by their right-hand sides, i.e, one is the homogeneous system, while the
other one is a corresponding inhomogeneous system.

Ex 2.10 (Multiple choice and True/False questions)

(a) Let

A =

 2 3 −3
−2 0 5
1 2 3

 and b =

 −3
−1
2

 .

Then the solution x =

 x1

x2

x3

 of the matrix equation Ax = b is such that

(A) x1 = 3 (B) x1 = 1 (C) x1 = 4 (D) x1 = −2.

(b) The Linear System 
x − 7y + 2z − 13t = 5
2x − 4y + 2z − 12t = 3
3x + y + 2z − t = 1
3x + 2y + 2z + 4t = 0

has



(A) no solution

(B) a unique solution

(C) a straight line as its solution set

(D) a plane as its solution set.

c) Decide whether the following statements are always true or if they can be false.
(i) A vector b is a linear combination of the columns of a matrix A if and only if the

equation Ax = b has at least one solution.
(ii) If the augmented matrix [A b] has a pivot position in every row, then the equation

Ax = b is inconsistent.
(iii) The solution set of Ax = b is the set of all vectors of the form w = p+ vh, where

vh is any solution of the equation Ax = 0.
(iv) The equation Ax = b is homogeneous if the zero vector is a solution.

Solution :

(a) The answer is (A). By applying row operations one solves the linear system to find
that x3 = 1, x2 = −2 and x1 = 3.

(b) The answer is (A). By applying row operations one can show that the (reduced)
echelon form of the augmented matrix has a row of the form

(
0 0 0 0 b

)
with b ̸= 0.

Thus there exists no solution.

(c) (i) True. If the columns of A are a1, . . . , an, then Ax is equal to x1a1 + · · · + xnan.
Therefore, solving Ax = b corresponds to finding the coefficients for a representation
of b as a linear combination of the columns of A.

(ii) False. It is possible that all rows of the augmented matrix have a pivot position
without the rightmost column being a pivot column (which is the relevant condition
for consistency). For example, the augmented matrix for the consistent equation
x1 = 5 is [1 5], whose only row has a pivot position.

(iii) False. This is true only if p is a solution of the equation Ax = b. In fact, Avh = 0
and Aw = b imply that b = Aw − Avh = A(w − vh) = Ap.

(iv) True. As A0 = 0, A0 = b implies that b = 0.

Ex 2.11 (Linear combinations and linear dependency : Proofs)

(a.) Finish the proof of Theorem 1.7 from class.

(b.) Prove Theorem 1.8 from class.

(c.) Prove Theorem 1.9 from class.

Tip : if you cannot come up with a proof from the top of your head : try to first state the
assumption then the goal and write both out according to the definition. (See e.g. first part of
proof of Theorem 1.7 from class.) Then try to work from one towards the other. If you still
cannot do it, it may be fruitful to make up an example (choose a couple of vectors in R3 with
actual numeric entries) that illustrates the given scenario. This might give you an idea of where
to start the formal proof. Coming up with your own examples to explain something to yourself
is a crucial part of becoming independent in your mathematical thinking process !

Solution :
Recall that the set V := {v1, . . . , vk} ⊂ Rn is linearly independent if the only solution (λ1, . . . , λk)
for the equation

∑k
i=1 λivi = 0 is λi = 0 for all i ∈ {1, . . . , k}.



(a.) To complete the proof of Theorem 1.7, suppose there is a j ∈ {1, . . . , k} such that
vj =

∑
i ̸=j civi, where ci ∈ R are scalars. We consider two scenarios.

(1) If all ci are 0, then vj is the zero vector in Rn and hence the set V is linearly dependent
(see Part (b.) below).
(2) If some ci are nonzero, then we have that

∑k
i=1 λivi = 0 under the choice λi = −ci

(for i ̸= j) and λj = 1, that is,

k∑
i=1

λivi = λ1v1 + · · ·+ vj + · · ·+ λkvk = −c1v1 + · · ·+
∑
i ̸=j

civi + · · · − ckvk = 0.

Hence, the set V is also in this scenario linearly dependent.

(b.) (i) Let {v1, ..., vk} ⊂ Rn and k > n. We want to show that {v1, ..., vk} are linearly de-
pendent. Consider the matrix A := (v1, ..., vk) (that is, the matrix that has v1, ..., vn as
its columns). Hence, by Theorems from class, linear dependence of {v1, ..., vk} is equiva-
lent to Ax = 0 having not only x = 0 (zero vector) as a solution.
The assumption k > n means that A has more columns than rows. Hence, every echelon
form Ã of A will have free variables. Therefore, in case one solution exists (and this is
indeed the case, because the zero-vector is already known to be a solution), then infini-
tely many solutions exists.

(ii) Let {v1, ..., vk} ⊂ Rn and vj = 0. Then we choose scalars λj = 0 for all i ∈
{0, ..., j − 1, j + 1, ..., k} and we choose λj = 1, Then λ1v1 + ... + λkvk = 0 but not
all scalars λi are zero. Hence the {v1, ..., vk} are dependent.

(c.) (i) If V := {v1, . . . , vk} ⊂ Rn is linearly dependent there are some scalars λi, some being

nonzero, such that
∑k

i=1 λivi = 0. Then, {V, vk+1} is again linearly dependent since∑k+1
i=1 λivi =

∑k
i=1 λivi + 0 · vk+1 = 0, that is, we can set λk+1 = 0.

(ii) Suppose V := {v1, . . . , vk−1} ⊂ Rn is not linearly independent, there must be some

scalars λi, some nonzero, such that
∑k−1

i=1 λivi = 0. However, then, {V, vk} cannot be

linearly independent since
∑k

i=1 λivi =
∑k−1

i=1 λivi + 0 · vk = 0.

Important to know : In proof-based exercises, usually many different solutions are possible and
correct. In addition, it is often up to your personal taste, whether you use more formulas or
rather explain most things in written text. The most important thing is, that your statements
(in words of formulas) are unambiguous and that all logical steps are accounted for (no gaps in
the argument).


