Duration: 144 minutes

EPFL

Linear Algebra Exam Common part Fall 2023

Questions

For the **multiple choice** questions, we give

- +3 points if your answer is correct,
 - 0 points if you give no answer or more than one,
- -1 if your answer is incorrect.

For the **true/false** questions, we give

- +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
- -1 points if your answer is incorrect.

Notation (all standard)

- $-\mathbb{R}$ denotes the set of real numbers.
- For a matrix $A, a_{ij} \in \mathbb{R}$ denotes the entry of A in row i and column j.
- For a vector $x \in \mathbb{R}^n$, x_i denotes the *i*th coordinate of x.
- $-I_m$ denotes the $m \times m$ identity matrix.
- \mathbb{P}_n is the vector space of polynomials of degree less than or equal to n.
- $\mathbb{R}^{m \times n}$ is the vector space of $m \times n$ matrices.
- The scalar or inner product of vectors $x, y \in \mathbb{R}^n$ is defined as $x \cdot y = x^T y$.
- The length of a vector $x \in \mathbb{R}^n$ is defined as $||x|| = \sqrt{x \cdot x}$.

First part: Multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct response.

Question 1: The matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

has a QR-decomposition such that

Question 2: Let

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \right\}$$

be two ordered bases of \mathbb{R}^3 . Let P be the change of basis matrix from the basis \mathcal{B} to the basis \mathcal{C} (i.e., the matrix that satisfies $[x]_{\mathcal{C}} = P[x]_{\mathcal{B}}$ for all $x \in \mathbb{R}^3$). Then, the second row of P is

Question 3: Let

$$A = \begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 2 & \sqrt{3} & \pi & 3 & \sqrt{2} \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & \pi & 3 & \sqrt{2} \\ \sqrt{3} & 1 & \pi & 3 & \sqrt{2} \end{pmatrix}.$$

Then

Question 4: The line that best approximates (in the sense of least squares) the following points (-3,-7),(-2,-3),(0,3),(3,7) is

Question 5: Let $\mathcal{B} = \{2 - t, t + t^2, -1 + t^3, -1 - t + 2t^2\}$ be an ordered basis of \mathbb{P}_3 . The fourth coordinate of the polynomial $p(t) = t + 2t^2 + 3t^3$ with respect to the basis \mathcal{B} is

$$\boxed{}$$
 3 $\boxed{}$ $-\frac{1}{7}$ $\boxed{}$ -7 $\boxed{}$ $\frac{1}{7}$

Question 6: Let

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 3 & -1 & 3 \\ -1 & 1 & 1 \end{array}\right).$$

The eigenvalues of A are

-3 and 2

 $\boxed{}$ -2 and 3

-1 and 2

-1 and 1

Question 7: Let

$$w_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \\ -1 \\ 1 \end{pmatrix}, \quad w_2 = \begin{pmatrix} -2 \\ 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \quad w_3 = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \quad y = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix}.$$

If b is the orthogonal projection of y onto $W = \text{Span}\{w_1, w_2, w_3\}$, then

 $b_3 = 20$

 $b_3 = \frac{7}{2}$

 $b_3 = 14$

Question 8: Let

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

If $x^* = \begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix}$ is a least-squares solution of the equation Ax = b, then the least-squares error of the approximation of b by Ax^* is

 $||b - Ax^*|| = \sqrt{2}$

 $||b - Ax^*|| = 6$ $||b - Ax^*|| = 0$ $||b - Ax^*|| = \sqrt{6}$

Question 9: The system of linear equations

$$\begin{cases} x_1 + 2x_2 + 5x_3 - 4x_4 = 0 \\ x_2 + 2x_3 + x_4 = 7 \\ x_2 + 3x_3 - 5x_4 = -4 \\ 2x_1 + 3x_2 + 4x_3 - 3x_4 = 1 \end{cases}$$

has a unique solution which satisfies

 $x_1 = 2$

 $x_1 = -2$

 $x_1 = -3$

Question 10: Let

$$A = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 5 & -1 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 0 & 1 \end{pmatrix}.$$

If $B = A^{-1}$ is the inverse of the matrix A, then

 $b_{33} = \frac{4}{30}$

 $b_{41} = \frac{1}{2}$

 $b_{43} = \frac{2}{3}$

 $b_{33} = -\frac{1}{12}$

Question 11: Let W be the vector space of 2×2 symmetric matrices and let $T: \mathbb{P}_2 \to W$ be the linear transformation defined by

$$T(a+bt+ct^2) = \begin{pmatrix} a & b-c \\ b-c & a+b+c \end{pmatrix}$$
 for all $a,b,c \in \mathbb{R}$.

Let

$$\mathcal{B} = \left\{1, \, 1-t, \, t+t^2\right\} \qquad \text{and} \qquad \mathcal{C} = \left\{\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)\right\}$$

be ordered bases of \mathbb{P}_2 and W, respectively. The matrix A associated to T relative to the bases \mathcal{B} of \mathbb{P}_2 and \mathcal{C} of W (i.e., the matrix satisfying $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$ for all $p \in \mathbb{P}_2$) is

$$\square \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix} \qquad \square \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \\
\square \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & 2 & 0 \end{pmatrix} \qquad \square \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Question 12: The matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

is invertible but not diagonalizable
is invertible and diagonalizable
is neither invertible nor diagonalizable
is diagonalizable but not invertible

Question 13: Let
$$A = \begin{pmatrix} 2 & 0 & 3 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
. Then

all eigenvalues of A have the same geometric multiplicity $\lambda = 4$ is an eigenvalue of A of algebraic multiplicity 2 all eigenvalues of A have the same algebraic multiplicity

 $\lambda = 2$ is an eigenvalue of A of geometric multiplicity 2

Question 14: Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be the linear transformation given by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x - y \\ -5x + 6y \\ x + y \end{pmatrix}.$$

Then

	T	is	injective but not surjective
	T	is	injective and surjective
	T	is	neither injective nor surjective
П	T	is	surjective but not injective

Question 15: Applying the Gram-Schmidt algorithm to the columns of the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -2 \end{pmatrix}$$

yields an orthogonal basis of Col(A) given by the vectors

$$\Box \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 1 \\ 1 \\ -2 \end{pmatrix} \qquad \qquad \Box \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \\
\Box \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \\
\Box \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

${\bf Second\ part:\ true/false\ questions}$

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 16: Let W be a subspace of \mathbb{R}^n and let u and v be two vectors in \mathbb{R}^n .
If $u \in W$, then the inner product between u and v is equal to the inner product between u and the orthogonal projection of v onto W .
TRUE FALSE
Question 17: Let $T: \mathbb{P}_6 \to \mathbb{R}^{3\times 2}$ be a linear transformation. Then there exist $p, q \in \mathbb{P}_6$ such that $p \neq q$ and $T(p) = T(q)$.
TRUE FALSE
Question 18: Let $\{b_1, \ldots, b_m\}$ be a basis of \mathbb{R}^m . If $A \in \mathbb{R}^{m \times n}$ is such that the equation $Ax = b_k$ has a least one solution for all $k = 1, \ldots, m$, then $\operatorname{Col}(A) = \mathbb{R}^m$.
TRUE FALSE
Question 19: If u_1, \ldots, u_k are k orthonormal vectors in \mathbb{R}^n , then the orthogonal complement of $\mathrm{Span}\{u_1, \ldots, u_k\}$ is a subspace of \mathbb{R}^n of dimension $n-k$.
TRUE FALSE
Question 20: If $A, B \in \mathbb{R}^{n \times n}$ are two invertible matrices such that $A+B$ is not the zero matrix, then $A+B$ is also invertible.
TRUE FALSE
Question 21: Let $A \in \mathbb{R}^{4\times 4}$ be a rank 3 matrix. If u, v, w are linearly independent vectors in \mathbb{R}^4 , then Au , Av , Aw are linearly independent vectors in \mathbb{R}^4 .
TRUE FALSE
Question 22: Let $A \in \mathbb{R}^{3\times 3}$ be a diagonalizable matrix with eigenvalues 2, 3, -5. Then it follows that $\det(A^3) = -27000$.
TRUE FALSE
Question 23: Let V and W be two vector spaces and $T\colon V\to W$ a linear transformation. If $\dim(\operatorname{Ker} T)=\dim(V)$, then $\operatorname{Ran}(T)=\left\{0_W\right\}$.
TRUE FALSE
Question 24: Let $A \in \mathbb{R}^{m \times n}$ where $m < n$. If the reduced echelon form of the matrix A has exactly k zero rows, then the set of solutions of the homogeneous system $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - k$.
TRUE FALSE

Question 25: Let $A \in \mathbb{R}^{n \times n}$ and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation defined by $T(x) = Ax$, for
all $x \in \mathbb{R}^n$. If A is such that $A^5 = 0$, then T is surjective.
TRUE FALSE
Question 26: If $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix, then
$\det(A - A^T) = \det(A) - \det(A^T).$
TRUE FALSE
Question 27: Let q be an arbitrary polynomial of degree 3. Then the set
$\left\{p\in\mathbb{P}_3:q(0)-p(0)=0\right\}$
is a subspace of \mathbb{P}_3 .
TRUE FALSE
Question 28: Let W be the subspace of \mathbb{P}_5 spanned by $p_1, p_2, p_3, p_4 \in \mathbb{P}_5$. If $\dim(W) = 4$, then there exist two polynomials $p_5, p_6 \in \mathbb{P}_5$ such that the set $\mathcal{B} = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ is a basis of \mathbb{P}_5 .
TRUE FALSE

Third part: open questions

- Answer in the empty space below using a black or dark blue ballpen.
- Your answer should be carefully justified, and all the steps of your argument should be discussed in details.
- Leave the check-boxes empty, they are used for the grading.

Question 29: This question is worth 3 points.

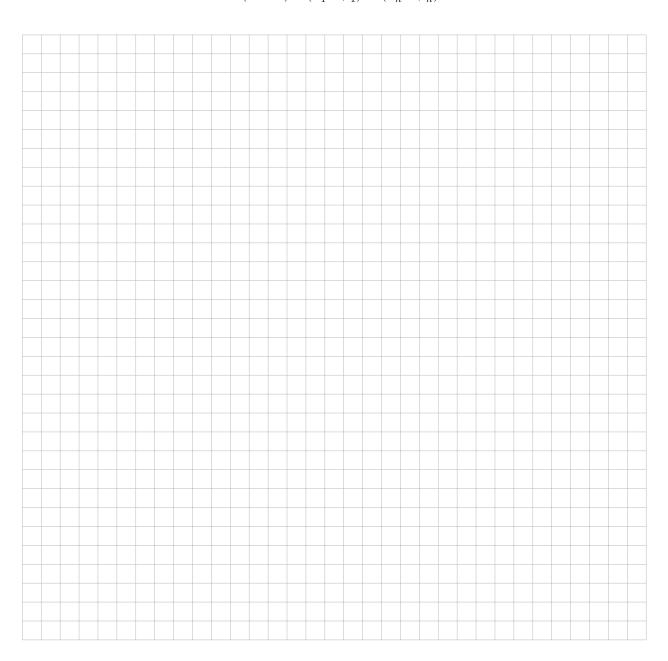
Let $v_1, \dots, v_n \in \mathbb{R}^n$ be linearly independent vectors.

Let A be a diagonalizable matrix in $\mathbb{R}^{n\times n}$ so that the vectors v_1,\ldots,v_n are eigenvectors of A for the eigenvalues α_1,\ldots,α_n respectively.

Let B be a diagonalizable matrix in $\mathbb{R}^{n \times n}$ so that the vectors v_1, \dots, v_n are eigenvectors of B for the eigenvalues β_1, \dots, β_n respectively.

Prove that A - B is diagonalizable and satisfies

$$\det(A - B) = (\alpha_1 - \beta_1) \cdots (\alpha_n - \beta_n).$$



Let A be a symmetric matrix in $\mathbb{R}^{3\times3}$ whose eigenvalues are

$$\lambda_1=2, \quad \lambda_2=-2 \quad \text{and} \quad \lambda_3=4\,.$$

Let c be a real number and let

be eigenvectors of
$$A$$
 for the eigenvalues $\lambda_1,\ \lambda_2$ and λ_3 respectively.

Determine the value of c and find the matrix A.

