Duration: 144 minutes

EPFL

Linear Algebra Exam Common part Fall 2022

Questions

For the **multiple choice** questions, we give

- +3 points if your answer is correct,
- 0 points if you give no answer or more than one,
- -1 if your answer is incorrect.

For the **true/false** questions, we give

- +1 points if your answer is correct,
 - 0 points if you give no answer or more than one,
- -1 points if your answer is incorrect.

Notation (all standard)

- $-\mathbb{R}$ denotes the set of real numbers.
- For a matrix $A, a_{ij} \in \mathbb{R}$ denotes the entry of A in row i and column j.
- For a vector $x \in \mathbb{R}^n$, x_i denotes the *i*th coordinate of x.
- I_m denotes the $m \times m$ identity matrix.
- \mathbb{P}_n is the vector space of polynomials of degree less than or equal to n.
- $\mathbb{R}^{m \times n}$ is the vector space of $m \times n$ matrices.
- The scalar or inner product of vectors $x, y \in \mathbb{R}^n$ is defined as $x \cdot y = x^T y$.
- The length of a vector $x \in \mathbb{R}^n$ is defined as $||x|| = \sqrt{x \cdot x}$.

First part: Multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct response.

Question 1: Let

$$A = \begin{pmatrix} 3 & -5 \\ 5 & 3 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$

Then the least squares solution $x^* = \begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix}$ of Ax = b satisfies

Question 2: Let R be the reduced echelon form of the matrix

$$\left(\begin{array}{cccc}
0 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0
\end{array}\right).$$

Then

Question 3: The regression line that best approximates (in the sense of least squares) the points (-2,-1),(0,1),(2,-2),(4,1) is

Question 4: The linear system

$$\begin{cases} x - 2y + 3z = 1\\ 2x + y - 4z = a\\ x - z = 2 \end{cases}$$

has solutions if and only if

Question 5: Let

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad \mathcal{C} = \left\{ \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\}$$

be two ordered bases of \mathbb{R}^3 . Let $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ be the change of basis matrix from the basis \mathcal{B} to the basis \mathcal{C} , i.e., the matrix such that $[x]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [x]_{\mathcal{B}}$ for all $x \in \mathbb{R}^3$. The third column of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is given by

$$\square \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \square \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \qquad \square \begin{pmatrix} -1/2 \\ -1/2 \\ 2 \end{pmatrix}$$

Question 6: Let $t \in \mathbb{R}$ be a parameter. The vectors

$$v_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -3 \\ 5 \\ -2 \end{pmatrix} \quad \text{and} \quad v_3 = \begin{pmatrix} t \\ -9 \\ 8 \end{pmatrix}$$

are linearly dependent if and only if

Question 7: Let $T \colon \mathbb{P}_2 \to \mathbb{R}^{2 \times 2}$ be the linear map defined by

$$T(p) = \begin{pmatrix} p(0) & p(1) \\ p(-1) & p(0) \end{pmatrix}$$
, for all $p \in \mathbb{P}_2$.

Let

$$\mathcal{B} = \left\{1, \, t + t^2, \, t - t^2\right\} \quad \text{and} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

be ordered bases of \mathbb{P}_2 and $\mathbb{R}^{2\times 2}$, respectively. The matrix A associated to T relative to the bases \mathcal{B} of \mathbb{P}_2 and \mathcal{C} of $\mathbb{R}^{2\times 2}$ such that $\big[T(p)\big]_{\mathcal{C}} = A\big[p\big]_{\mathcal{B}}$ for all $p \in \mathbb{P}_2$ is given by

$$\square \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \square \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & -2 \\ 1 & 0 & 0 \end{pmatrix} \\
\square \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \square \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Question 8: Let

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} a & 3b & c \\ d+2a & 3e+6b & f+2c \\ g & 3h & k \end{pmatrix}$$

be two 3×3 matrices. If det(A) = 1, then we have

Question 9: The inverse of the matrix

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 6 & 4 & 5 \\ 5 & 3 & 4 \end{pmatrix}$$

is given by

$$\Box A^{-1} = \begin{pmatrix} -1 & -3 & 4 \\ -1 & 1 & -1 \\ 2 & 3 & -4 \end{pmatrix}$$

$$\Box A^{-1} = \begin{pmatrix} -1 & 3 & 1 \\ -1 & 1 & 0 \\ 2 & 3 & -1 \end{pmatrix}$$

$$\Box A^{-1} = \begin{pmatrix} -1 & 3 & -4 \\ -1 & -1 & 1 \\ 2 & -3 & 4 \end{pmatrix}$$

$$\Box A^{-1} = \begin{pmatrix} -1 & 3 & -1 \\ -1 & -1 & 0 \\ 2 & -3 & 1 \end{pmatrix}$$

Question 10: The Gram-Schmidt algorithm applied to the columns of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & -3 \end{pmatrix}$$

yields an orthogonal basis of Col(A) given by the vectors

$$\Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$

$$\Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ -5 \end{pmatrix}$$

$$\Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ -5 \end{pmatrix}$$

$$\Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ -5 \end{pmatrix}$$

$$\Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Question 11: The orthogonal projection of the vector $\begin{pmatrix} 1\\1\\1\\3 \end{pmatrix}$ on the subspace generated by the first two

columns of the matrix A from Question 10 is the vector

$$\square \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 3 \\ 1 \\ 0 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 8 \\ -4 \\ 0 \\ 12 \end{pmatrix} \qquad \square \begin{pmatrix} 18 \\ 2 \\ 0 \\ 16 \end{pmatrix}$$

Question 12: The matrix A from Question 10 has a QR-decomposition such that

Question 13: Let $A = \begin{pmatrix} 3 & 0 & 1 \\ 5 & 4 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. Then

	$\lambda = 4 \text{ is an}$	eigenvalue	with	${\bf geometric}$	multiplicity	2
--	-----------------------------	------------	------	-------------------	--------------	---

$$\hfill \lambda=3$$
 is an eigenvalue with algebraic multiplicity 1

$$\lambda = 3$$
 is an eigenvalue with geometric multiplicity 2

Question 14: Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear map defined by T(x) = Ax for all $x \in \mathbb{R}^3$, where

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 5 \\ 2 & 1 & 7 \\ 0 & 2 & 6 \end{pmatrix}.$$

Then

	T	is	injective	but	not	surjective
--	---	----	-----------	-----	----------------------	------------

- \Box T is injective and surjective
- \Box T is surjective but not injective

${\bf Second\ part:\ true/false\ questions}$

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 15: Let V be a subspace of \mathbb{R}^4 and let w_1 and w_2 be two vectors in \mathbb{R}^4 . If w_1 and w_2 are linearly independent, then the vectors $\operatorname{proj}_V(w_1)$ and $\operatorname{proj}_V(w_2)$ are linearly independent.	У
TRUE FALSE	
Question 16: Let $\{v_1, \ldots, v_k\}$ be an orthogonal set of vectors in \mathbb{R}^n . If $v_0 \in \mathbb{R}^n$ is such that $\{v_0, v_1, \ldots, v_k\}$ is an orthogonal set, then $v_0 \in \operatorname{Span}\{v_1, \ldots, v_k\}^{\perp}$.	}
TRUE FALSE	
Question 17: If $A \in \mathbb{R}^{m \times n}$, then it holds that	
$\dim(\operatorname{Col} A) + \dim(\operatorname{Col} A^T) + \dim(\operatorname{Ker} A) + \dim(\operatorname{Ker} A^T) = m + n.$	
TRUE FALSE	
Question 18: Let A and P be two $n \times n$ matrices. If $P^T A P$ is symmetric, then A is symmetric.	
TRUE FALSE	
Question 19: Let $W = \{A \in \mathbb{R}^{2 \times 2} : A = A^T\}$. Then W is a three-dimensional subspace of $\mathbb{R}^{2 \times 2}$.	
TRUE FALSE	
Question 20: Let $A \in \mathbb{R}^{n \times n}$ and R be its reduced echelon form. Then	
$\det(A) = \det(R).$	
TRUE FALSE	
Question 21: Let $A, B \in \mathbb{R}^{n \times n}$ be two matrices. If A and B have the same characteristic polynomial then A and B have the same eigenvalues and for each eigenvalue λ we have $\dim \left(\operatorname{Ker}(A - \lambda I_n) \right) = \dim \left(\operatorname{Ker}(B - \lambda I_n) \right).$	l,
TRUE FALSE	
Question 22: Let V and W be finite dimensional vector spaces and let $T:V\to W$ be a linear map. Let be the dimension of the range of T . Then $d\leq \dim(W)$ and $d\leq \dim(V)$.	d
TRUE FALSE	
Question 23: If $A \in \mathbb{R}^{m \times n}$ is a matrix whose columns form a basis for \mathbb{R}^m , then for all $b \in \mathbb{R}^m$ the linear system $Ax = b$ has a unique solution.	r
TRUE FALSE	
Question 24: Let V be an n -dimensional vector space and let $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ be a set of vector in V . If every subset of \mathcal{F} containing $n-1$ elements is linearly independent, then \mathcal{F} is a basis for V .	S
TRUE FALSE	

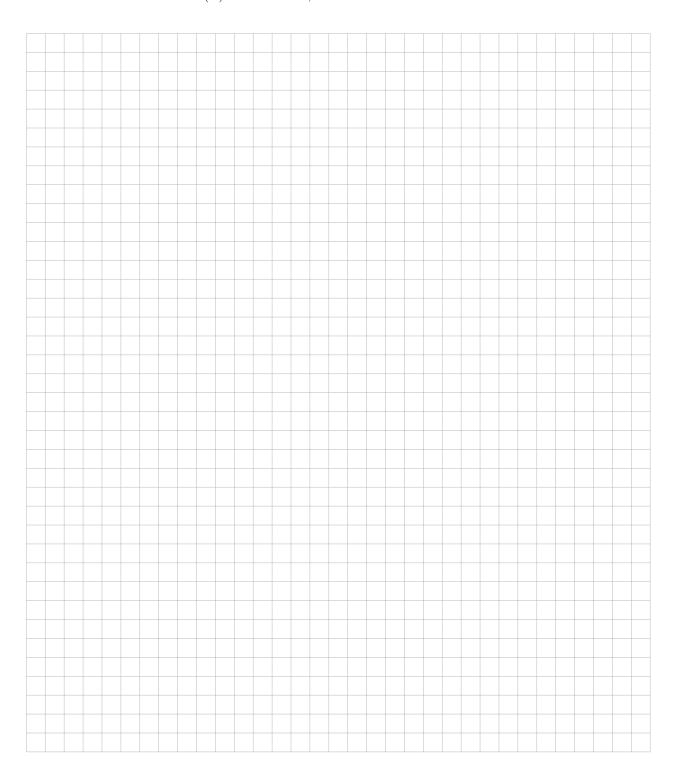
Question 25:	If $A, B \in \mathbb{R}^{n \times n}$ are two invertible matrices, then $(A + B)^2$ is invertible.
	TRUE FALSE
Question 26:	The set $\{p \in \mathbb{P}_n : p(-t) = -p(t) \text{ for all } t \in \mathbb{R}\}$ is a subspace of \mathbb{P}_n .
	☐ TRUE ☐ FALSE
Question 27:	If v and w are two vectors in \mathbb{R}^3 , then the matrix
	$A = v v^T - w w^T$
is diagonalizable	2.
	TRUE FALSE

Third part: open questions

- Answer in the empty space below using a black or dark blue ballpen.
- Your answer should be carefully justified, and all the steps of your argument should be discussed in details.
- Leave the check-boxes empty, they are used for the grading.

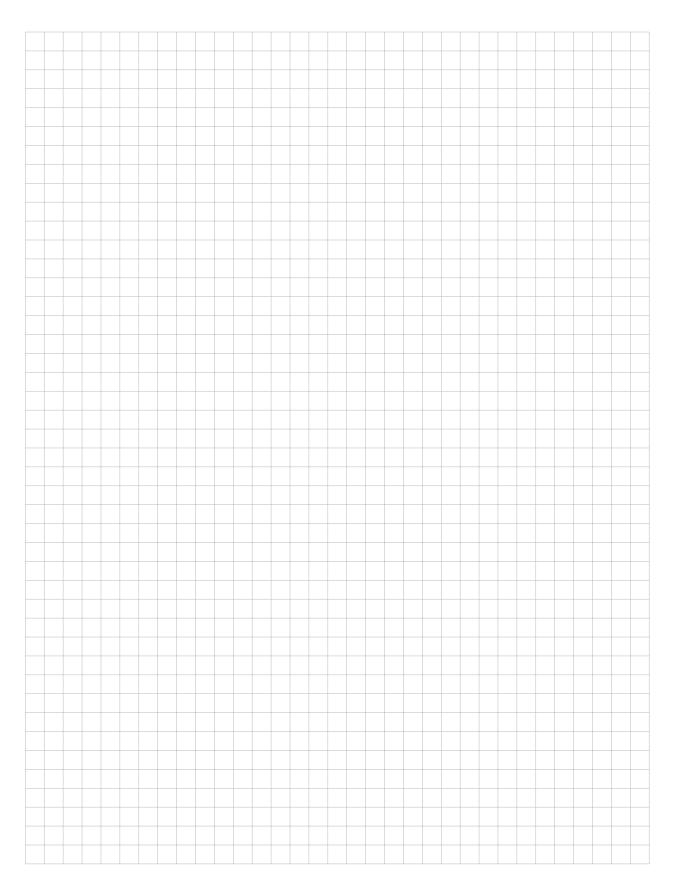
Question 28: This question is worth 3 points.

Let $A \in \mathbb{R}^{m \times n}$ be a matrix such that its reduced echelon form has exactly k zero rows. Determine the rank of A and the dimension of Ker(A) in terms of m, n and k.



Question 29: This question is worth 3 points.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Let $v \in \mathbb{R}^n$ be an eigenvector of A and $W = \operatorname{Span}\{v\}$. Show that if $y \in W^{\perp}$, then $Ay \in W^{\perp}$.



Question 30: This question is worth 3 points.

0		3 Do not write here
---	--	---------------------

Let $A \in \mathbb{R}^{n \times n}$ and let O be the $n \times n$ zero matrix.

Show that if A is diagonalizable and $A^2 = O$, then A = O.

