EPFL - Semestre d'Automne 2017-2018 Algèbre Linéaire

J. Scherer Questions personnelles

MICROTECHNIQUE

Question A (4 po	oints). Soit A 1	une matrice symétrique.
------------------	--------------------	-------------------------

a)	$(1\ \mathrm{point})$ Que dit le Théorème spectral? Dire explicitement ce que cela signifie pour matrice d'être orthodiagonalisable.
o)	(3 points) Soit λ et μ deux valeurs propres distinctes de la matrice A . Montrer que les espapropres E_{λ} et E_{μ} sont orthogonaux.

Question B (14 points). Dans cet exercice W est le sous-espace de \mathbb{R}^4 engendré par les vecteurs

Question B (14 points). Dans cet exercice
$$W$$
 est $\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$ et $\begin{pmatrix} -1\\1\\1\\0 \end{pmatrix}$ et A est la matrice $\begin{pmatrix} 1&1&0&1\\1&0&1&1 \end{pmatrix}$.

- (a) (2 points) Construire une base orthonormée de W.
- (b) (1 point) Calculer la matrice $B = A^T A$.

(c)	(2 points)	Calculer le	polynôme c	aractéristiqu	ue et les vale	eurs propres	de la matric	$e B = A^T A.$

(d)	(2 points) Identifier les espaces propres de B sachant que le vecteur $\begin{pmatrix} 2\\1\\1\\2 \end{pmatrix}$	est un vecteur propre
	de B , et en utilisant la partie (a).	/
(e)	(2 points) Calculer une base orthonormée de vecteurs propres de B .	

f) (3 points) Calculer les n de la matrice A .	natrices U, V et Σ	de la décompositi	ion en valeurs sing	gulières $U\Sigma$