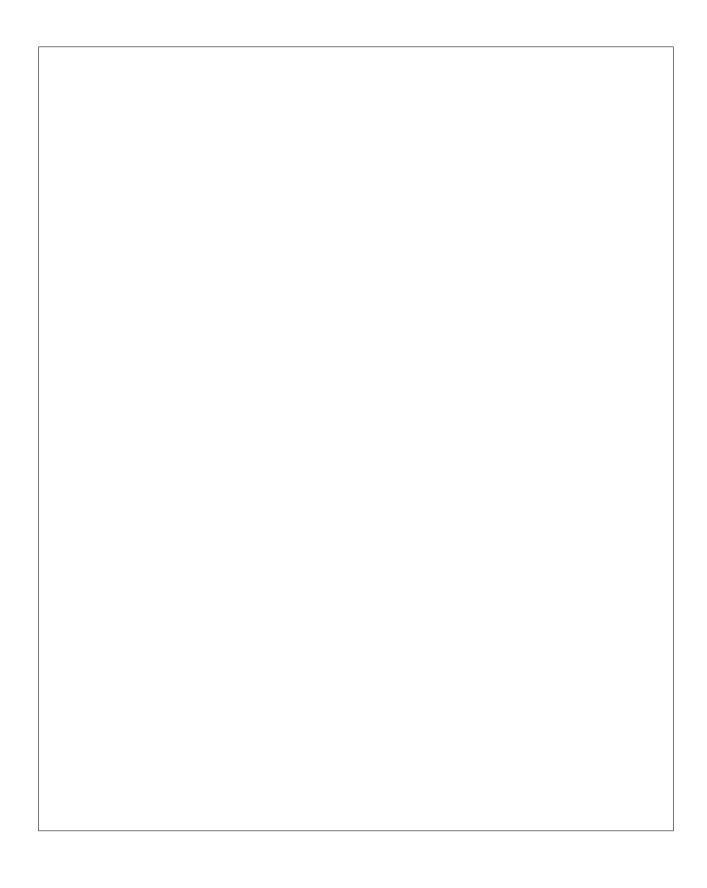
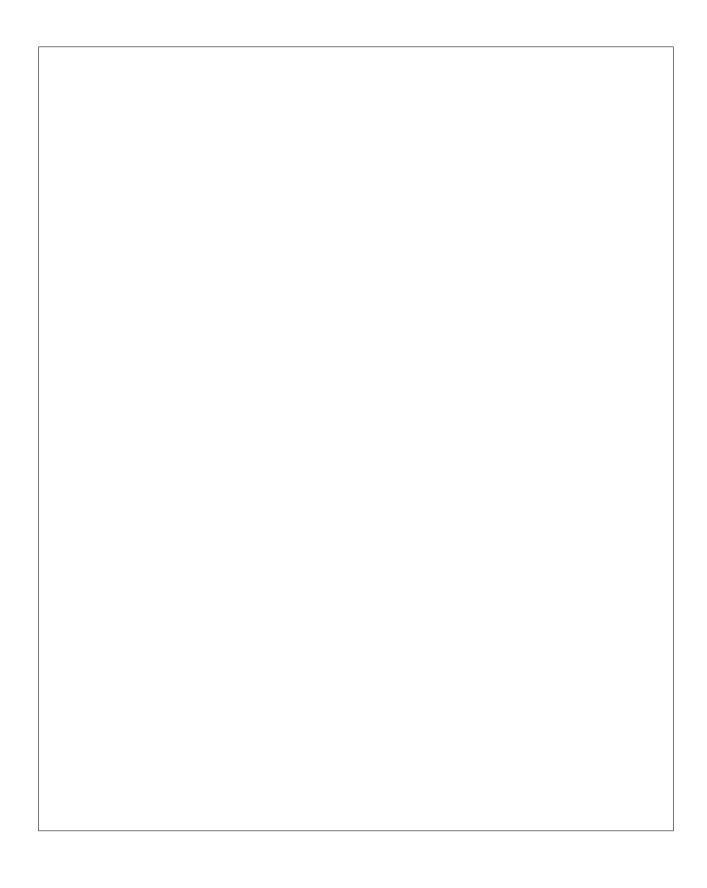
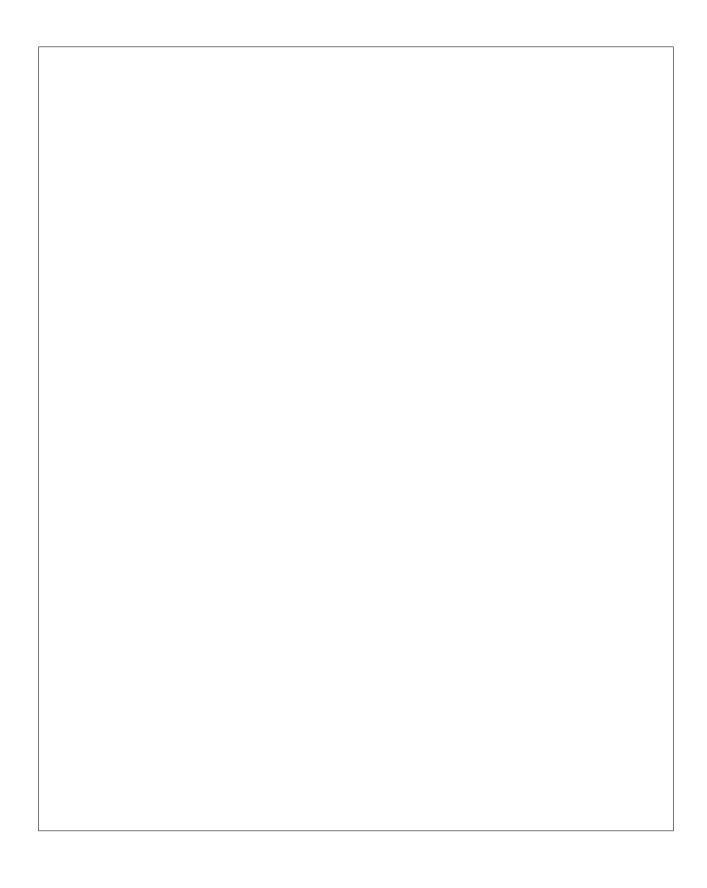
Question 33 (4 points). Soit \overrightarrow{u} un vecteur unitaire de \mathbb{R}^n et $A = \overrightarrow{u} \overrightarrow{u}^T$.

1. (1 point) Montrer que \overrightarrow{u} est un vecteur propre de A.


2.	(1 point) Calculer la dimension du noyau de A , (justifier chaque affirmation!).							
3.	(1 point) Identifier le noyau de A comme un certain sous-espace orthogonal.							
4.	(1 point) Conclure des trois points ci-dessus que A est la matrice de la projection orthogonale sur $\text{Vect}\{\overrightarrow{u}\}.$							


Question 34 (14 points). (a) (4 points) On considère le sous-espace W de \mathbb{R}^4 donné par $\begin{bmatrix} -2 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix}$
l'équation $x_1 + 2x_2 + x_3 + 2x_4 = 0$. Les vecteurs $\overrightarrow{b}_1 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$, $\overrightarrow{b}_2 = \begin{bmatrix} 0\\0\\-2\\1 \end{bmatrix}$, $\overrightarrow{b}_3 = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}$
forment une base $\mathcal{B} = (\overrightarrow{b}_1, \overrightarrow{b}_2, \overrightarrow{b}_3)$ de W . Appliquer le procédé de Gram-Schmidt à cette base \mathcal{B} pour construire une base orthogonale de W .


(b) (3 points) Calculer le polynôme caractéristique de la matrice $A=$	$\begin{pmatrix} 3 \\ 2 \\ 1 \\ 2 \end{pmatrix}$	2 6 2 4	$ \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 2 \\ 2 & 6 \end{pmatrix}. $	

(c) (3 points) Calculer u	ne base orthonormé	e de chaque espace	propre de la matrio	ee A.

	iser A.			
s) Donner la			diagonale	de la ma
s) Donner la \hat{A} pour le			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma
			diagonale	de la ma

