Informatique

le 8 novembre 2024

Exercice 1. Soient

$$\overrightarrow{w} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \quad \text{et} \quad A = \begin{bmatrix} 1 & 3 & -5/2 \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{bmatrix}.$$

Déterminer si \overrightarrow{w} est dans ImA, dans KerA ou bien dans les deux.

Exercice 2. Soit la matrice

$$C = \begin{pmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{pmatrix}$$

- 1. Trouver une base de KerC.
- 2. On note par T la transformation linéaire de \mathbb{R}^5 dans \mathbb{R}^4 définie par $T(\overrightarrow{x}) = C\overrightarrow{x}$. L'application T est-elle injective? T est-elle surjective? Justifier votre réponse.

Exercice 3. Soient

$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- 1. Montrer que les matrices A et B sont équivalentes (selon les lignes). (**Indication :** quelle est la forme échelonnée et réduite des deux matrices?)
- 2. Calculer le rang de A et dimKerA.
- 3. Trouver une base pour chacun des sous-espaces $\operatorname{Im} A$, $\operatorname{Ker} A$ et $\operatorname{Ker} A^T$, ainsi que du sous-espace $\operatorname{Lgn}(A)$ engendré par les lignes de A.

Exercice 4.

- (a) Soit $A = \begin{pmatrix} 1 & a-1 \\ a & 6 \end{pmatrix}$. Calculer le noyau et l'image de A en fonction des valeurs du paramètre réel a. Déterminer quand la matrice A est inversible.
- (b) Calculer le noyau et le rang de la matrice de Vandermonde $B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & a & a^2 & a^3 \\ 1 & -1 & 1 & -1 \\ 1 & 2 & 4 & 8 \end{pmatrix}$ en fonction des valeurs du paramètre réel a.

Exercice 5. On considère la transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ définie par

$$T(p) = \left(\begin{array}{c} p(0) \\ p(0) \end{array}\right)$$

- (a) Vérifier que T est linéaire.
- (b) Trouver la dimension et une base de Im T.
- (c) Appliquer le Théorème du rang pour trouver la dimension du noyau de T.
- (d) Vérifier le résultat de (c) en trouvant une base de Ker T.

Exercice 6.

On considère la transformation $T: \mathbb{P}_3 \to \mathbb{P}_2$ définie par

$$T(a+bt+ct^2+dt^3) = (a+b+c+d) + (a+b)t + (c+d)t^2.$$

- (a) Vérifier que T est linéaire.
- (b) Trouver la dimension et une base de Im T.
- (c) Vérifier que le polynôme $7 + 5t + 2t^2$ est bien dans l'image de T et donner ses coordonnées dans la base trouvée en (b).
- (d) Trouver la dimension et une base de KerT.
- (e) Vérifier que le polynôme $2-2t-5t^2+5t^3$ est bien dans le noyau de T et donner ses coordonnées dans la base trouvée en (d).

Exercice 7. Soient les vecteurs $\overrightarrow{u} \in \mathbb{R}^m$, $\overrightarrow{u} \neq \overrightarrow{0}$, et $\overrightarrow{v} \in \mathbb{R}^n$, $\overrightarrow{v} \neq \overrightarrow{0}$. La matrice $m \times n$ définie par $\overrightarrow{u} \overrightarrow{v}^T$ est appelée "matrice de rang un". Utiliser la définition du rang pour démontrer que le rang de $\overrightarrow{u} \overrightarrow{v}^T$ est effectivement 1.

Exercice 8. Soit A une matrice de taille $m \times n$. Démontrer que $A\overrightarrow{x} = \overrightarrow{b}$ admet une solution pour tout \overrightarrow{b} dans \mathbb{R}^m si et seulement si $A^T\overrightarrow{y} = \overrightarrow{0}$ n'admet que la solution triviale $\overrightarrow{y} = \overrightarrow{0}$.

Indication. Utiliser le Théorème du rang.

Exercice 9.

- a) Soit P une matrice inversible de taille 2×2 et D une matrice diagonale. On pose $A = PDP^{-1}$. Montrer que $A^2 = PD^2P^{-1}$, puis déduire une formule qui permet de calculer A^{10} .
- b) On considère les matrices

$$A = \begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}, \ P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}.$$

Vérifier que $A = PDP^{-1}$, puis calculer A^{10} en utilisant le point a).

Exercice 10. Choix Multiple et Vrai-faux. a. Soit $A = \begin{bmatrix} 1 & 6 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$. \square Im A est un sous-espace de \mathbb{R}^4 de dimension 0 \square Im A est un sous-espace de \mathbb{R}^2 de dimension 0 \square Im A est un sous-espace de \mathbb{R}^4 de dimension 1 \square Im A est un sous-espace de \mathbb{R}^2 de dimension 1 b. Soit A une matrice de taille $m \times n$. \square Les colonnes de A engendrent le novau de A^T . \square Le sous-espace engendré par les lignes de A est égal au sous-espace engendré par les colonnes de A. \square Le sous-espace engendré par les lignes de A est isomorphe au sous-espace engendré par les colonnes de A. \square La dimension du noyau de A est égale à la dimension du noyau de A^T . c. Il existe une matrice A de taille 3×7 telle que : \square dimKerA = 2 et dimImA < 4 \square dimKerA = 3 et dimImA = 4 \square dimKerA = 4 et dimImA < 2 \square dimKerA = 5 et dimImA = 2d. Soit A la matrice de la projection orthogonale $\mathbb{R}^3 \to \mathbb{R}^3$ sur le plan horizontal Vect $\{\overrightarrow{e}_1, \overrightarrow{e}_2\}$. \square dimKerA = 1 et dimImA = 1 \square dimKerA = 2 et dimImA = 1 \square dimKerA = 1 et dimImA = 2 \square dimKerA = 2 et dimImA = 2e. Soit A une matrice inversible de taille 5×5 . Laquelle des affirmations suivantes est vraie? \square Les colonnes de A n'engendrent pas \mathbb{R}^5 . \square Les lignes de A sont linéairement indépendantes. \square Le novau de A est vide. \square Le rang de A est strictement plus petit que 5. f. Soit $T: \mathbb{P}_2 \to \mathbb{R}$ définie par T(p) = p(-1) + p(0) + p(1). Alors \square T n'est pas linéaire. \square dimKerT = 1 et dimImT = 2.

g. Soit $T: \mathbb{P}_2 \to \mathbb{R}$ définie par T(p) = p(-1) + p(0) + p(1). Une base du noyau de T est donnée

 \square dimKerT = 1 et dimImT = 1. \square dimKerT = 2 et dimImT = 1.

 \Box (t).

 $\Box (t, 3 + 2t^2).$

 $\Box (2-3t^2).$

 $\Box (-2+t+3t^2,2-3t^2).$