J. Scherer **Série 14**

le 20 décembre 2025

Exercice 1. Soit

Informatique

$$A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}$$

Diagonaliser A par un changement de base orthonormé (pour une matrice de changement de base orthogonale).

Exercice 2. Soit \mathbb{F}_8 le corps à huit éléments construit comme $\mathbb{F}_2[t]/(t^3+t+1)$, dont les éléments sont les restes de la division polynomiale par le polynôme irréductible $p(t) = t^3 + t + 1$. On appelle α la classe [t].

- 1. Montrer que $p(\alpha) = 0$, si bien que α est une racine de $p(t) \in \mathbb{F}_8[t]$.
- 2. Montrer que si β est une racine de p(t) dans \mathbb{F}_8 , alors β^2 aussi.
- 3. Montrer que $p(\alpha^2) = 0 = p(\alpha^2 + \alpha)$ et factoriser p(t) comme produit de polynômes irréductibles de $\mathbb{F}_8[t]$.
- 4. Calculer le polynôme caractéristique de la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in M_{3\times 3}(\mathbb{F}_2)$ et montrer que cette matrice n'est pas diagonalisable.
- 5. Vue comme matrice de $M_{3\times 3}(\mathbb{F}_8)$ montrer que A est diagonalisable.

Exercice 3. Soit

$$A = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$

- 1. Calculer la décomposition SVD de A.
- 2. Décrire l'image de la sphère unité de \mathbb{R}^3 par l'application linéaire représentée par A.

Exercice 4. (Wikipedia) Soit

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{pmatrix}$$

- 1. Calculer la décomposition SVD de A.
- 2. Décrire l'image de la sphère unité de \mathbb{R}^5 par l'application linéaire représentée par A.

Exercice 5. Soit A une matrice symétrique inversible. Montrer qu'alors l'inverse de A est aussi symétrique.

Indication. (Re)démontrer d'abord que $(A^T)^{-1} = (A^{-1})^T$ pour toute matrice inversible A.

Exercice 6. On travaille avec le corps \mathbb{F}_3 et on cherche à construire "le" corps à neuf éléments.

- a) Trouver tous les polynômes unitaires et irréductibles de degré 2 dans $\mathbb{F}_3[t]$.
- b) Soit $p(t) = t^2 + t + 2$ et $\mathbb{F}_9 = \mathbb{F}_3[t]/(p(t))$. Si α est la classe de t, calculer toutes les puissances de α et les exprimer comme polynômes de degré ≤ 1 en α .
- c) Soit $q(t) = t^2 + 1$ et $\mathbb{F}_9' = \mathbb{F}_3[t]/(q(t))$. Si β est la classe de t, calculer toutes les puissances de β et les exprimer comme polynômes de degré ≤ 1 en β .
- d) Trouver dans \mathbb{F}_9 un élément x tel que $x^4 = 1$.
- e) Construire une application \mathbb{F}_3 -linéaire $T \colon \mathbb{F}'_9 \to \mathbb{F}_9$ en posant $T(a+b\beta) = a+bx$. Vérifier que cette application est bijective (indication : utiliser le critère d'injectivité).
- f) Vérifier que $T(\beta)^2 + T(1) = 0$.
- g) Conclure que T est un isomorphisme de corps, c'est-à-dire que T est aussi compatible avec le produit : T(rs) = T(r)T(s) pour tous $r, s \in \mathbb{F}'_9$. (Indication : on exprimera $r = a + b\beta$ et $s = c + d\beta$ pour $a, b, c, d \in \mathbb{F}_3$)

Remarques:

- Cet exercice illustre le fait que deux corps de même cardinalité sont toujours isomorphes.
- (Remarque culturelle) Dans tout corps K fini de cardinalité p^n , il existe un élément α non nul tel que les puissances $\alpha^0, \alpha^1, \ldots, \alpha^{p^n-1}$ parcourent tous les éléments non nuls de K.

Joyeux Noël et bonne année!