EPFL - Semestre d'Automne 2024-2025

Algèbre Linéaire

Informatique

J. Scherer Quiz 4 Semaine 5

Question. On travaille dans l'espace vectoriel $M_{3\times 4}(\mathbb{R})$ des matrices de taille 3×4 . On considère les

sous-ensembles de matrices en damier $V = \left\{ \begin{pmatrix} a_{11} & 0 & a_{13} & 0 \\ 0 & a_{22} & 0 & a_{24} \\ a_{31} & 0 & a_{33} & 0 \end{pmatrix} \mid a_{11}, a_{13}, a_{22}, a_{24}, a_{31}, a_{33} \in \mathbb{R} \right\}$ et $W = \left\{ \begin{pmatrix} 0 & a_{12} & 0 & a_{14} \\ a_{21} & 0 & a_{23} & 0 \\ 0 & a_{32} & 0 & a_{34} \end{pmatrix} \mid a_{12}, a_{14}, a_{21}, a_{23}, a_{32}, a_{34} \in \mathbb{R} \right\}$.

et
$$W = \left\{ \begin{pmatrix} 0 & a_{12} & 0 & a_{14} \\ a_{21} & 0 & a_{23} & 0 \\ 0 & a_{32} & 0 & a_{34} \end{pmatrix} \mid a_{12}, a_{14}, a_{21}, a_{23}, a_{32}, a_{34} \in \mathbb{R} \right\}$$

Parmi les affirmations suivantes lesquelles sont vraies? Le symbole (0) désigne la matrice nulle de taille 3×4 .

- (A) $V \cap W = \{(0)\}.$
- (B) Si $A \in V$ et $B \in W$, alors $A \cdot B = (0)$.
- (C) $V + W = M_{3\times 4}(\mathbb{R})$.
- \square aucune
- \square exactement une
- □ exactement deux
- \square toutes les trois