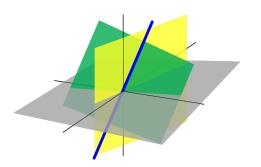
Algèbre Linéaire

Cours du jeudi 5 décembre

Hpoll.eu 286206

Jérôme Scherer



6.2 Orthogonalité: Rappels

Soit A une matrice de taille $n \times m$. Alors A^T est de taille $m \times n$.

- Les lignes de A^T sont les colonnes \overrightarrow{a}_i de A;
- ② $A^T \overrightarrow{x} = \overrightarrow{0}$ si et seulement si $\overrightarrow{x} \perp ImA$;
- **3** Les coefficients $(A^T A)_{ij}$ sont les produits scalaires $\overrightarrow{a}_i \cdot \overrightarrow{a}_j$;
- Les colonnes de A sont orthogonales si et seulement si A^TA est diagonale;
- **1** Les coefficients de AA^T sont les produits scalaires des lignes de A;
- Les lignes de A sont orthogonales si et seulement si AA^T est diagonale.

6.4.1 LE PROCÉDÉ DE GRAM-SCHMIDT

But. Trouver une base orthogonale ou orthonormée d'un sous-espace W de \mathbb{R}^n .

Idée. Utiliser de manière inductive les projections orthogonales. On considère dans \mathbb{R}^4 l'hyperplan W donné par l'équation $x_1 + 2x_2 + x_3 + x_4 = 0$.

On cherche d'abord une base, par exemple celle proposée par la méthode de Gauss :

$$\mathcal{B} = \left(\begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right)$$

- 6.4.1 LE PROCÉDÉ DE GRAM-SCHMIDT On a donc une base $\mathcal{B} = \left(\overrightarrow{b}_1, \overrightarrow{b}_2, \overrightarrow{b}_3\right)$ de W.
 - ② On pose $\overrightarrow{c}_1 = \overrightarrow{b}_1$, il faut bien commencer quelque part.
 - **1** On calcule la projection orthogonale de \overrightarrow{b}_2 sur $\text{Vect}\{\overrightarrow{c}_1\}$:

$$\hat{b}_2 = \frac{\overrightarrow{c}_1 \cdot \overrightarrow{b}_2}{\overrightarrow{c}_1 \cdot \overrightarrow{c}_1} \overrightarrow{c}_1 = \frac{2}{5} \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} -4/5\\2/5\\0\\0 \end{pmatrix}$$

① On change \overrightarrow{b}_2 pour le rendre orthogonal à \overrightarrow{c}_1 :

$$\vec{b}_2 - \hat{b}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -4/5 \\ 2/5 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/5 \\ -2/5 \\ 1 \\ 0 \end{pmatrix}$$

6.4.1 Exemple, suite

Maintenant que nous avons une base orthogonale du plan

$$V = \text{Vect}\{\overrightarrow{b}_1, \overrightarrow{b}_2\}$$
, à savoir $(\overrightarrow{c}_1, \overrightarrow{c}_2)$, les formules de projection sont à notre disposition pour calculer $\hat{b}_3 = \text{proj}_V \overrightarrow{b}_3$ et $\overrightarrow{b}_3 = \begin{pmatrix} - & \wedge \\ & \ddots \\ & & \end{pmatrix}$

$$\overrightarrow{c}_3 = \overrightarrow{b}_3 - \hat{b}_3.$$

$$b_{3} = b_{3} \cdot c_{1} + b_{3} \cdot c_{2} \cdot c_{1} = 113$$

$$||c_{1}||^{2} + ||c_{1}||^{2} + ||c_{1$$

6.4.1 Exemple, fin

Nous avons ainsi construit une base orthogonale $\mathfrak{C}=(\overrightarrow{c}_1,\overrightarrow{c}_2,\overrightarrow{c}_3) \text{ de } W. \text{ Elle jouit des propriétés suivantes}:$

- Le vecteur $\overrightarrow{c}_1 = \overrightarrow{b}_1$;
- 2 Le vecteur \overrightarrow{c}_k est combinaison linéaire des vecteurs $\overrightarrow{b}_1, \ldots, \overrightarrow{b}_k$, en particulier c'est un vecteur de W;
- **3** On voit inductivement que $\overrightarrow{c}_1, \ldots, \overrightarrow{c}_k$ engendrent le même sous-espace vectoriel que $\overrightarrow{b}_1, \ldots, \overrightarrow{b}_k$, si bien que $\mathscr C$ est une base de W.

6.4.2 LE PROCÉDÉ DE GRAM-SCHMIDT : THÉORIE

But. Trouver une base orthogonale ou orthonormée d'un sous-espace W de \mathbb{R}^n .

Idée. Utiliser de manière inductive les projections orthogonales.

Soit $(\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k)$ une base de W, sous-espace de \mathbb{R}^n .

THÉORÈME

Les vecteurs suivants forment une base orthogonale de W.

$$\overrightarrow{\mathsf{v}}_1 = \overrightarrow{\mathsf{u}}_1;$$

$$\overrightarrow{v}_2 = \overrightarrow{u}_2 - \frac{\overrightarrow{u}_2 \cdot \overrightarrow{v}_1}{\|\overrightarrow{v}_1\|^2} \overrightarrow{v}_1;$$

6.4.3 Démonstration

Pour construire \overrightarrow{V}_2 on soustrait à \overrightarrow{u}_2 sa projection orthogonale sur le sous-espace $W_1 = \mathrm{Vect}\{\overrightarrow{V}_1\}$, pour ne garder que la composante orthogonale à W_1 .

$$\boxed{\overrightarrow{v}_2 = \overrightarrow{u}_2 - \frac{\overrightarrow{u}_2 \cdot \overrightarrow{v}_1}{\|\overrightarrow{v}_1\|^2} \overrightarrow{v}_1}$$

Pour construire \overrightarrow{v}_{i+1} on soustrait à \overrightarrow{u}_{i+1} sa projection orthogonale sur le sous-espace $W_i = \mathrm{Vect}\{\overrightarrow{v}_1,\ldots,\overrightarrow{v}_i\}$, pour ne garder que la composante orthogonale à W_i . La famille $\{\overrightarrow{v}_1,\ldots,\overrightarrow{v}_i\}$ est orthogonale, les formules s'appliquent!

$$\overrightarrow{V}_{i+1} = \overrightarrow{U}_{i+1} - \frac{\overrightarrow{U}_{i+1} \cdot \overrightarrow{V}_1}{\|\overrightarrow{V}_1\|^2} \overrightarrow{V}_1 - \dots - \frac{\overrightarrow{U}_{i+1} \cdot \overrightarrow{V}_i}{\|\overrightarrow{V}_i\|^2} \overrightarrow{V}_i$$

6.4.4 La factorisation QR

Une interprétation de l'algorithme de Gram-Schmidt se fait sous forme de factorisation, que nous retrouverons dans la section suivante sur la méthode des moindres carrés.

DÉFINITION

Soit A une matrice $m \times n$ dont les colonnes sont libres. Alors il existe une factorisation A = QR où les colonnes de $Q \in M_{m \times n}(\mathbb{R})$ sont orthonormées et $R \in M_{n \times n}(\mathbb{R})$ est triangulaire supérieure et inversible avec des coefficients diagonaux strictement positifs.

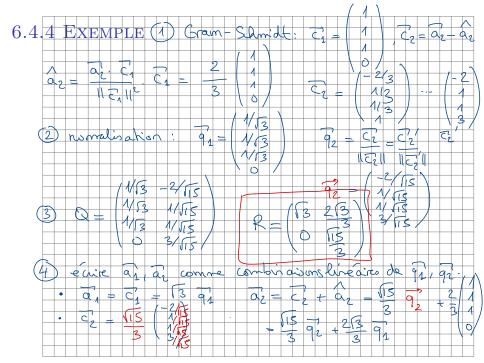
Preuve. On applique par exemple la méthode Gram-Schmidt pour obtenir une base orthogonale Q de ImA à partir des colonnes de A (sans en changer l'ordre), puis on normalise les vecteurs. On forme Q avec ces vecteurs (colonnes).

6.4.4 La factorisation QR

La k-ème colonne de A est combinaison linéaire des k premières colonnes de Q et le dernier coefficients est toujours positif. On constate cela en utilisant les formules du Gram-Schmidtage, ou alternativement on se souvient que la base orthogonale construite consiste à soustraire à \overrightarrow{a}_k sa projection orthogonale sur l'espace engendrés par les colonnes précédentes. Après normalisation le k-ème coefficient reste positif.

La matrice R a pour colonnes ces coefficients : $\overrightarrow{r}_k = (\overrightarrow{a}_k)_{\mathbb{Q}}$. \square

Exemple. Soit
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$
. On cherche sa factorisation QR .



6.5.1 MÉTHODE DES MOINDRES CARRÉS

On cherche la "meilleure solution possible" d'un système incompatible $\overrightarrow{Ax} = \overrightarrow{b}$, où A est une matrice $m \times n$.

DÉFINITION

Un vecteur $\hat{x} \in \mathbb{R}^n$ est une solution au sens des moindres carrés pour le système $A\overrightarrow{x} = \overrightarrow{b}$ si, pour tout $\overrightarrow{x} \in \mathbb{R}^n$

$$\|\overrightarrow{b} - A\hat{x}\| \le \|\overrightarrow{b} - A\overrightarrow{x}\|$$

Comme $\overrightarrow{Ax} \in \operatorname{Im} A$, le système est incompatible si $\overrightarrow{b} \not\in \operatorname{Im} A$. Le vecteur le plus proche de \overrightarrow{b} dans $\operatorname{Im} A$ est sa projection orthogonale

$$\hat{b} = \operatorname{proj}_{\operatorname{Im} \mathcal{A}} \overrightarrow{b}$$

6.5.1 Moindres carrés : problème équivalent

Pour trouver les solutions \hat{x} du système incompatible

$$\overrightarrow{Ax} = \overrightarrow{b}$$

au sens des moindres carrés, il faut résoudre le système comparible

$$A\hat{x} = \hat{b}$$

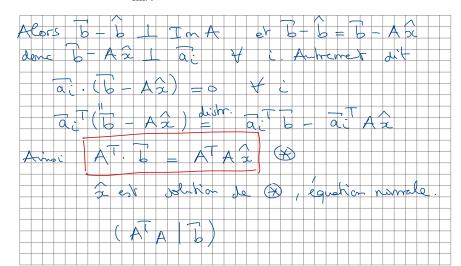
REMARQUE

Il y a en général une infinité de solutions au sens des moindres carrés, à moins que l'application linéaire représentée par A ne soit injective.

Sans calculer \hat{b} que peut-on faire?

6.5.1 Moindres carrés : problème équivalent

Supposons que \hat{x} soit solution au sens des moindres carrés, si bien que $A\hat{x} = \hat{b} = \operatorname{proj}_{\operatorname{Im} A} \overrightarrow{b}$.



6.5.2 Equation Normale

THÉORÈME

L'ensemble des solutions de $\overrightarrow{Ax} = \overrightarrow{b}$ au sens des moindres carrés est égal à l'ensemble non-vide des solutions de l'équation normale :

$$A^T A \hat{x} = A^T \overrightarrow{b}$$

Preuve. Soit \hat{x} une solution de l'équation normale. Nous devons montrer que $A\hat{x} = \hat{b}$. Nous savons que $A^T(\overrightarrow{b} - A\hat{x}) = \overrightarrow{0}$. Le vecteur $\overrightarrow{z} = \overrightarrow{b} - A\hat{x}$ est donc orthogonal à $\mathrm{Im}A$. Mais alors

$$\overrightarrow{b} = A\hat{x} + \overrightarrow{z}$$

avec $A\hat{x} \in \text{Im} A$ et $\overrightarrow{z} \in (\text{Im} A)^{\perp}$.

6.5.2 Equation Normale

THÉORÈME

L'ensemble des solutions de $\overrightarrow{Ax} = \overrightarrow{b}$ au sens des moindres carrés est égal à l'ensemble non-vide des solutions de l'équation normale :

$$A^T A \hat{x} = A^T \overrightarrow{b}$$

Preuve. Soit \hat{x} une solution de l'équation normale. Nous devons montrer que $A\hat{x}=\hat{b}$. Nous savons que $A^T(\overrightarrow{b}-A\hat{x})=\overrightarrow{0}$. Le vecteur $\overrightarrow{z}=\overrightarrow{b}-A\hat{x}$ est donc orthogonal à ImA. Mais alors

$$\overrightarrow{b} = A\hat{x} + \overrightarrow{z}$$

avec $A\hat{x} \in \text{Im}A$ et $\overrightarrow{Z} \in (\text{Im}A)^{\perp}$. Cette écriture est unique : Ainsi $A\hat{x} = \hat{b}$.

6.5.2 Exemple

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 et $\overrightarrow{b} = \begin{pmatrix} 7 \\ 2 \\ 3 \\ 6 \\ 5 \\ 4 \end{pmatrix}$.

On cherche toutes les solutions au sens des moindres carrés de l'équation incompatible $\overrightarrow{Ax} = \overrightarrow{b}$.

On résout donc l'équation normale $A^T A \hat{x} = A^T \overrightarrow{b}$.

6.5.2 EXEMPLE, SUITE 6 moindres carries 6.5.2 EXEMPLE, FIN Ver A

6.5.3 QUESTION DE L'UNICITÉ

Soit \hat{x} une solution au sens des moindres carrés du système $A\overrightarrow{x} = \overrightarrow{b}$.

DÉFINITION

La norme du vecteur $\overrightarrow{b} - A\hat{x}$ est appelée écart quadratique.

THÉORÈME

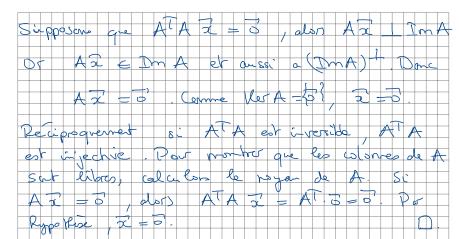
La solution \hat{x} au sens des moindres carrées est unique si et seulement si les colonnes de A sont libres, ce qui est équivalent à exiger que la matrice A^TA est inversible.

Si $A^T A$ est inversible, alors on tire de $A^T A \hat{x} = A^T \overrightarrow{b}$ que

$$\hat{x} = (A^T A)^{-1} A^T \overrightarrow{b}$$

6.5.3 Preuve

Supposons d'abord que les colonnes de A sont libres, si bien que le noyau de A est nul. On va montrer que la matrice carrée A^TA est inversible en prouvant que son noyau est nul aussi.



6.5.3 Exemple

Soit
$$A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 et $\overrightarrow{b} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$.

La solutions au sens des moindres carrés de l'équation incompatible

 $\overrightarrow{Ax} = \overrightarrow{b}$ est unique puisque les colonnes de A sont libres.

On préfère la méthode plus efficace de l'équation normale!

On calcule
$$A^T A = \begin{pmatrix} 1 & 1 & 1 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 11 \end{pmatrix}$$

On calcule encore

$$\hat{b} = A^{T} \overrightarrow{b} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \end{pmatrix}.$$

6.5.3 EXEMPLE, FIN

A.9 LE CORPS \mathbb{F}_4

Nous avons rencontré les corps \mathbb{F}_p qui ont un nombre p, premier, d'éléments. Il s'agit des nombres entiers modulo p que l'on considère comme les restes possibles de la division par p.

REMARQUE

Les entiers modulo 4 ne forment pas un corps car $2 \cdot 2 = 0$. Le produit $\mathbb{F}_2 \times \mathbb{F}_2$ non plus car $(1,0) \cdot (0,1) = (0,0)$.

Nous allons maintenant remplacer les entiers par les polynômes $\mathbb{F}_2[t]$ et la division euclidienne par la division polynomiale.

- Les restes de la division par un polynôme de degré un sont de degré 0, il n'y a donc que 0 et 1...
- On choisit donc un polynôme de degré 2.

A.9 LE CORPS \mathbb{F}_4

Les restes de la division par un polynôme de degré 2 sont de degré plus petit, on travaille donc dans l'ensemble

$$\{0,1,t,t+1\}$$

Nous connaissons tous les polynômes de degré 2, il s'agit de $t^2=t\cdot t, t^2+t=t\cdot (t+1), t^2+1=(t+1)^2$ et t^2+t+1 .

REMARQUE

Si on choisit un polynôme non irréductible, le résultat n'est pas un corps, car il existe deux restes non nuls dont le produit est nul.

DÉFINITION

Soit $p(t)=t^2+t+1$. La somme et le produit de restes de division par p(t) font de $\{0,1,t,t+1\}$ un corps à quatre éléments, \mathbb{F}_4 .

A.10 L'ADDITION DANS \mathbb{F}_4

L'addition est donnée par l'addition des polynômes :

+	0	1	t	t + 1		
0	0	1	t	t+1		
1	1	0	t+1	t		
t	t	t+1	0	1		
t+1	t+1	t	1	0		

- La symétrie de la table montre la commutativité.
- Les zéros dans la diagonale montrent que chaque élément est son opposé.

A.11 LA MULTIPLICATION DANS \mathbb{F}_4

Le produit est donnée par le produit des polynômes :

•	0	1	t	t + 1			
0	0	0	0	0			
1	0	1	t	t+1			
t	0	t	t+1				
t + 1	0	t+1					

Calculons $t\cdot t$ et les autres produits manquants. La clé de ces calculs est le fait que $t^2+t+1=0$ puisque le reste de la division d'un polynôme par lui-même est zéro. Ainsi

$$t^2 = t + 1$$

A.11 QUELQUES PRODUITS