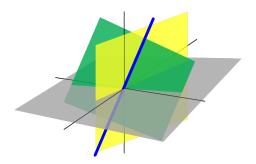
ALGÈBRE LINÉAIRE COURS DU MARDI 3 DÉCEMBRE

Jérôme Scherer



6.2.1 Familles orthogonales

DÉFINITION

Une famille $(\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k)$ de vecteurs de \mathbb{R}^n est orthogonale si $\overrightarrow{u}_i \perp \overrightarrow{u}_j$ pour tous $i \neq j$. Cette famille est orthonormée si de plus $\|\overrightarrow{u}_i\| = 1$ pout tout i.

Rappel.

- **1** Deux vecteurs \overrightarrow{u} et \overrightarrow{v} de \mathbb{R}^n sont orthogonaux si leur produit scalaire est nul : $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.
- ② Par distributivité du produit scalaire, $\overrightarrow{u} \perp \overrightarrow{a}$ et $\overrightarrow{u} \perp \overrightarrow{b}$ implique que $\overrightarrow{u} \perp \operatorname{Vect}\{\overrightarrow{a}, \overrightarrow{b}\}.$

THÉORÈME

Une famille orthogonale de vecteurs non nuls est libre.

6.2.2 Coordonnées dans une base orthogonale

Soit W un sous-espace de \mathbb{R}^n et $(\overrightarrow{u}_1, \dots, \overrightarrow{u}_k)$ une base orthogonale de W.

THÉORÈME

Pour tout vecteur $\overrightarrow{w} \in W$, on a $\overrightarrow{w} = \alpha_1 \overrightarrow{u}_1 + \cdots + \alpha_k \overrightarrow{u}_k$ et $\boxed{\alpha_j = \frac{\overrightarrow{w} \cdot \overrightarrow{u}_j}{\|\overrightarrow{u}_i\|^2}}$

Exemple. On construit une base orthogonale de \mathbb{R}^3 en commençant avec le plan d'équation 2x-3y+z=0.

La méthode de Gauss nous fournit une base, par exemple, quitte à

amplifier pour éviter des fractions, $\overrightarrow{b}_1 = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$.

6.2.2 Exemple

Or, ces deux vecteurs ne sont pas orthogonaux. Pour trouver un vecteur de W orthogonal à \overrightarrow{b}_1 , je peux par exemple le choisir de

la forme
$$\begin{pmatrix} -2 \\ 3 \\ c \end{pmatrix}$$
, le produit scalaire avec \overrightarrow{b}_1 vaut bien zéro,

mais il faut encore que c=13 pour que l'équation du plan W soit satisfaite. Ainsi on obtient une base orthogonale de W avec

$$\overrightarrow{b}_1 = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$
 et $\overrightarrow{b}_2 = \begin{pmatrix} -2 \\ 3 \\ 13 \end{pmatrix}$. On ajoute encore

$$\overrightarrow{b}_3 = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \in W^{\perp}$$
 pour avoir une famille orthogonale de \mathbb{R}^3 .

6.2.2 Exemple, suite

La famille ordonnée
$$\mathcal{B}=\left(\left(\begin{array}{c}3\\2\\0\end{array}\right),\left(\begin{array}{c}-2\\3\\13\end{array}\right),\left(\begin{array}{c}2\\-3\\1\end{array}\right)\right)$$
 est

une famille orthogonale de vec-

teurs non nuls de \mathbb{R}^3 , elle en forme donc une base. On cherche $(\overrightarrow{u})_{\mathcal{B}}$.

6.2.2 EXEMPLE, FIN

6.2.3 Matrices orthogonales

THÉORÈME

Les colonnes d'une matrice U de taille $m \times n$ sont orthonormées si et seulement si $U^T U = I_n$.

Preuve. Si $U = (\overrightarrow{u}_1 \dots \overrightarrow{u}_n)$, alors le coefficient (i,j) de la matrice $U^T U$ est exactement $\overrightarrow{u}_i^T \overrightarrow{u}_j = \overrightarrow{u}_i \cdot \overrightarrow{u}_j$.

DÉFINITION

Une matrice carrée U est orthogonale si $U^TU = I_n$. Autrement dit $U^{-1} = U^T \iff$ colonnes (et lignes!) de U sont orthonormées.

Une matrice orthogonale représente une transformation linéaire qui préserve les distances et l'orthogonalité (c'est donc une isométrie de \mathbb{R}^n , par exemple une rotation ou une symétrie).

6.2.4 Préservation des longueurs

THÉORÈME

Soit U une matrice orthogonale. Alors

Preuve. (2) On calcule $U\overrightarrow{x} \cdot U\overrightarrow{y}$ avec la définiton :

$$(U\overrightarrow{x})^T U\overrightarrow{y} = \overrightarrow{x}^T U^T U\overrightarrow{y} = \overrightarrow{x}^T \overrightarrow{y} = \overrightarrow{x} \cdot \overrightarrow{y}. \qquad \overrightarrow{\mathcal{A}} \cdot \overrightarrow{\mathcal{A}} = ||\overrightarrow{\mathcal{A}}||^2$$

- (1) Lorsque $\overrightarrow{x} = \overrightarrow{y}$ on trouve $\|U\overrightarrow{x}\|^2 = \|\overrightarrow{x}\|^2$ d'où le point 1.
- (3) On voit que le produit scalaire $U\overrightarrow{x} \cdot U\overrightarrow{y}$ est nul si et seulement si $\overrightarrow{x} \cdot \overrightarrow{y} = 0$.

6.2.4 EXEMPLES 11/ COJ X له -sind الف ८० ऽ 11/-5/2 et der A 6 derB colonnes des les ligges orRigona

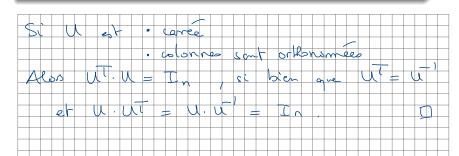
6.2.4 EXEMPLES. n'est pas offograle

6.2.4 CAVEAT

ATTENTION!

Si U est orthogonale, alors aussi $UU^T = I_n$. Mais

- si A est carrée avec A^TA diagonale, AA^T n'est pas diagonale en général;
- $ext{ a si } A ext{ n'est pas carrée avec } AA^T = I_n, ext{ alors } A^TA \neq I_m ext{ en général.}$



6.2.5 Exemples

- Les matrices de réflexion sont orthogonales.
- Les matrices de rotation sont orthogonales.

$$U = \frac{1}{100} \begin{pmatrix} 36 & 48 & -80 \\ -80 & 60 & 0 \\ 48 & 64 & 60 \end{pmatrix}$$
 est orthogonale.

$$U = \frac{1}{100} \begin{pmatrix} 36 & 48 & -80 \\ -80 & 60 & 0 \\ 48 & 64 & 60 \end{pmatrix}$$
 est orthogonale.

C'est en fait la matrice d'une rotation d'axe
$$\begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$
 et

d'angle 73,8°, pour le voir il faut diagonaliser U, sur \mathbb{C} !

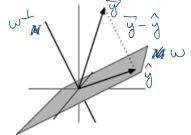
6.2.5 EXEMPLE

6.3.1 Projection orthogonale

Soit W un sous-espace de \mathbb{R}^n dont on dispose d'une base orthogonale $(\overrightarrow{u}_1, \dots, \overrightarrow{u}_k)$.

Pour $\overrightarrow{y} \in \mathbb{R}^n$ on cherche

- le vecteur $\hat{y} \in W$ tel que
- le vecteur $\overrightarrow{z} = \overrightarrow{y} \hat{y}$ est perpendiculaire à W.



6.3.1 Construction de la projection

Soit $(\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k)$ une base orthogonale de W, sous-espace de \mathbb{R}^n .

THÉORÈME

Tout vecteur \overrightarrow{y} de \mathbb{R}^n s'écrit de manière unique $\overrightarrow{y} = \hat{y} + \overrightarrow{z}$ où $\hat{y} \in W$ et $\overrightarrow{z} \in W^{\perp}$.

Preuve. Pour l'unicité, supposons que $\hat{y} + \overrightarrow{z} = \overrightarrow{y} = \hat{y}' + \overrightarrow{z}'$.

Alors $\hat{y} - \hat{y}' = \overrightarrow{z}' - \overrightarrow{z}$ est un vecteur de W et W^{\perp} . Il est donc nul, car orthogonal à lui-même : $\hat{y} = \hat{y}'$ et $\overrightarrow{z}' = \overrightarrow{z}$.

Pour démontrer l'existence, il suffit de poser

$$\widehat{\hat{y}} = \frac{\overrightarrow{y} \cdot \overrightarrow{u}_1}{\|\overrightarrow{u}_1\|^2} \overrightarrow{u}_1 + \dots + \frac{\overrightarrow{y} \cdot \overrightarrow{u}_k}{\|\overrightarrow{u}_k\|^2} \overrightarrow{u}_k$$

6.3.1LA PREUVE que alalo Ф y. a' 10 distr. Si i # = 0 u.

6.3.2 Observation

Pour calculer la projection orthogonale $\operatorname{proj}_{W} \overrightarrow{V} = \hat{v}$ de \overrightarrow{V} sur W. il faut connaître une base orthogonale de W, mais il n'est pas nécessaire d'avoir une base orthogonale de \mathbb{R}^n en entier.

Exemple. (Lay, Ex. 6.3.2, page 381). Soit

$$W = \operatorname{Vect}\left(\begin{pmatrix} -2\\1\\-1\\1\\-2\\-1\\ -1\\ -2\\ -1\\ \sqrt{2}\\1\\ -2\\ \sqrt{2}\\3 \end{pmatrix}\right) \text{ et } \overrightarrow{y} = \begin{pmatrix} 4\\5\\-3\\3\\3 \end{pmatrix}$$
On cherche $\hat{y} = \operatorname{proj}_{W} \overrightarrow{y}$

On cherche $\hat{y} = \text{proj}_{M}$

6.3.2 EXEMPLE 0 ala Pro vector est dans sla laires Bono: Ned

6.3.2 Méthode

- Vérifier que la base de W est orthogonale! I.e. $\overrightarrow{u}_i \cdot \overrightarrow{u}_j = 0$ pour $i \neq j$.
- 2 Calculer les normes au carré des vecteurs de base \overrightarrow{u}_i .
- **3** Calculer les produits scalaires $\overrightarrow{y} \cdot \overrightarrow{u}_i$.
- Calculer la projection

$$\widehat{y} = \frac{\overrightarrow{y} \cdot \overrightarrow{u}_1}{\|\overrightarrow{u}_1\|^2} \overrightarrow{u}_1 + \dots + \frac{\overrightarrow{y} \cdot \overrightarrow{u}_k}{\|\overrightarrow{u}_k\|^2} \overrightarrow{u}_k$$

- **6** Calculer $\overrightarrow{z} = \overrightarrow{y} \hat{y}$ et vérifier que $\overrightarrow{z} \perp W$.
- **10 Remarque.** Si $\overrightarrow{y} \in W$, alors $\hat{y} = \overrightarrow{y}$ et $\overrightarrow{z} = \overrightarrow{0}$.

6.3.3 Projection, cas d'une base orthonormée

Soit $(\overrightarrow{u}_1, \dots, \overrightarrow{u}_k)$ une base orthonormée de W, alors tous les \overrightarrow{u}_i sont unitaires et famile ai-dessur $\operatorname{proj}_{W} \overrightarrow{y} \stackrel{\checkmark}{=} (\overrightarrow{y} \cdot \overrightarrow{u}_{1}) \overrightarrow{u}_{1} + \dots + (\overrightarrow{y} \cdot \overrightarrow{u}_{k}) \overrightarrow{u}_{k}$ $\operatorname{proj}_{W} y = (y \cdot \overline{u}_{1}) \overline{u}_{1} + \dots + (\overline{y} \cdot \overline{u}_{k}) \overline{u}_{k}$ $\operatorname{def.du} \operatorname{produit} = (\overline{u}_{1}^{T} \overline{y}) \overline{u}_{1} + \dots + (\overline{u}_{k}^{T} \overline{y}) \overline{u}_{k}$ $\operatorname{coloik} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix} = UU^{T} \overline{y}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$ $\operatorname{def.du} \operatorname{produit} = U \begin{pmatrix} \overline{u}_{1}^{T} \overline{y} \\ \vdots \\ \overline{u}_{k}^{T} \overline{y} \end{pmatrix}$

THÉORÈME

d'une base orthonormée de W. Alors

Soit
$$U$$
 la matrice dont les colonnes sont les vecteurs $\overrightarrow{u}_1, \ldots, \overrightarrow{u}_k$ d'une base orthonormée de W . Alors $\operatorname{proj}_W \overrightarrow{y} = UU^T \overrightarrow{y}$.

6.3.4 Approximation quadratique

La distance minimale entre un vecteur \overrightarrow{y} et un sous-espace W de \mathbb{R}^n est réalisée par $\overrightarrow{z} = \overrightarrow{y} - \operatorname{proj}_W \overrightarrow{y}$.

THÉORÈME

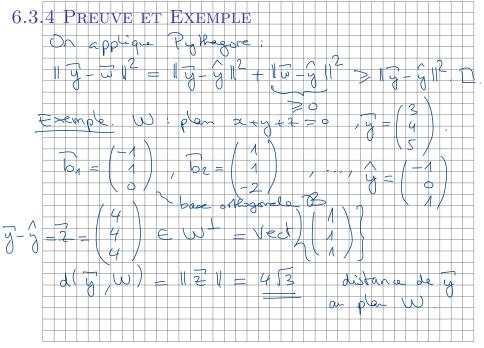
Pour tout $\overrightarrow{w} \in W$ on a $\|\overrightarrow{y} - \overrightarrow{w}\| \ge \|\overrightarrow{y} - \operatorname{proj}_{W} \overrightarrow{y}\|$.

On appelle ce vecteur \hat{y} la meilleure approximation quadratique de \overrightarrow{y} dans W dans le sens où elle minimise le carré de la distance qui est calculée par la somme des carrées des coordonnées.

Preuve. L'idée est d'écrire un vecteur \overrightarrow{w} de W de manière compliquée : $\overrightarrow{w} = \hat{y} + (\overrightarrow{w} - \hat{y})$, si bien que

$$\overrightarrow{y} - \overrightarrow{w} = \overrightarrow{y} - \hat{y} - (\overrightarrow{w} - \hat{y})$$

Or $\overrightarrow{y} - \hat{y} = \overrightarrow{z}$ est dans W^{\perp} et $\overrightarrow{w} - \hat{y} \in W$.



6.4.0 Gram et Schmidt

Gram (1850 - 1916) et Schmidt (1876 - 1959).

6.4.1 LE PROCÉDÉ DE GRAM-SCHMIDT

But. Trouver une base orthogonale ou orthonormée d'un sous-espace W de \mathbb{R}^n .

Idée. Utiliser de manière inductive les projections orthogonales. On considère dans \mathbb{R}^4 l'hyperplan W donné par l'équation $x_1 + 2x_2 + x_3 + x_4 = 0$.

On cherche d'abord une base, par exemple celle proposée par la méthode de Gauss :

$$\mathcal{B} = \left(\begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right)$$

6.4.1 Procédé de Gram-Schmidt, suite

