

4.7.3 Exemple, suite

On échelonne donc :

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 1 & 8 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & -8 \\ 0 & 1 & -10 & 9 \end{bmatrix}$$

ce qui signifie que $9\overrightarrow{c}_1 - 10\overrightarrow{c}_2 = \overrightarrow{b}_1$ et $-8\overrightarrow{c}_1 + 9\overrightarrow{c}_2 = \overrightarrow{b}_2$.

Nous avons trouvé les coordonnées des vecteurs de la base ${\mathcal B}$ exprimés dans la base ${\mathcal C}$. Ainsi la matrice de changement de base

$$P = (Id)_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 9 & -8 \\ -10 & 9 \end{bmatrix} \text{ et donc } (Id)_{\mathcal{C}}^{\mathcal{B}} = P^{-1} = \begin{bmatrix} 9 & 8 \\ 10 & 9 \end{bmatrix} \cdot \frac{1}{dd} P$$

$$\int_{\mathcal{C}} |P = g^2 - \rho \cdot \delta = 1$$

4.7.3 Encore un exemple

On travaille dans l'espace vectoriel W des matrices symétriques de taille 2×2 (telles que $A = A^T$). Ainsi

$$W = \left\{ \left(egin{array}{cc} a & b \ b & c \end{array}
ight) \mid a,b,c \in \mathbb{R}
ight\}$$

On considère deux bases $\mathfrak{B}=(B_1,B_2,B_3)$ et $\mathfrak{C}=(C_1,C_2,C_3)$:

$$\begin{split} \mathcal{B} &= \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) = \left(\varrho_{A1}, \varrho_{A1} + \varrho_{t}, \varrho_{zz} \right) = \left(\beta_{A1} \beta_{z}, \beta_{z} \right) \\ \mathcal{C} &= \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) = \left(C_{1}, C_{r}, C_{z} \right) \end{split}$$

4.7.4 Double changement de base

Soient \mathcal{B} , \mathcal{C} et \mathcal{D} trois bases de V.

$$(Id)^{\mathcal{D}}_{\mathfrak{C}}(Id)^{\mathfrak{C}}_{\mathfrak{B}}=(Id)^{\mathfrak{D}}_{\mathfrak{B}}$$

Preuve. La composition $(V, \mathcal{B}) \xrightarrow{ld} (V, \mathcal{C}) \xrightarrow{ld} (V, \mathcal{D})$ est

l'identité. La multiplication matricielle correspond à la composition.

Explicitement:

$$(Id)_{\mathcal{C}}^{\mathcal{D}}(Id)_{\mathcal{B}}^{\mathcal{C}}(x)_{\mathcal{B}} = (Id)_{\mathcal{C}}^{\mathcal{D}}(x)_{\mathcal{C}} = (x)_{\mathcal{D}}$$

REMARQUE

C'est donc un cas particulier de la formule de matrice d'une composition d'applications linéaires.

5.1.0 MOTIVATION

Soit $T: V \rightarrow V$ une application linéaire.

OBJECTIF

Trouver une base \mathcal{B} de V telle que $(T)_{\mathcal{B}}^{\mathcal{B}}$ soit facilement compréhensible.

5.1.0 MOTIVATION

Soit $T: V \rightarrow V$ une application linéaire.

OBJECTIF

Trouver une base \mathcal{B} de V telle que $(T)^{\mathcal{B}}_{\mathcal{B}}$ soit facilement compréhensible.

Pour comprendre comment la matrice de ${\cal T}$ est modifiée lorsque la base change, les matrices de changement de base interviennent.

5.1.0 MOTIVATION, SUITE

Alors

$$A = (f)_{\text{ean}}^{\text{ean}} = \begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}$$

Mais qui donc est cette application f? On "se rend compte" que certains vecteurs sont fixés par f alors que d'autres sont renversés.

5.1.0 MOTIVATION, SUITE

Alors

$$A = (f)_{\text{ean}}^{\text{ean}} = \begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}$$

Mais qui donc est cette application f? On "se rend compte" que certains vecteurs sont fixés par f alors que d'autres sont renversés.

Autrement dit

o il existe des vecteurs $\overrightarrow{x} \in \mathbb{R}^3$ tels que $A\overrightarrow{x} = \overrightarrow{x}$;

5.1.0 MOTIVATION, SUITE

Alors

$$A = (f)_{\text{ean}}^{\text{Can}} = \begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}$$

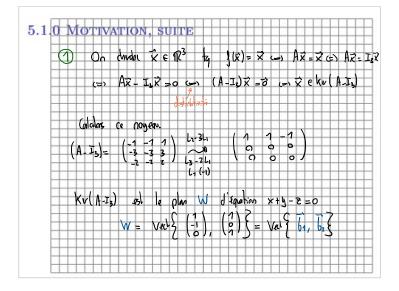
Mais qui donc est cette application f? On "se rend compte" que certains vecteurs sont fixés par f alors que d'autres sont renversés.

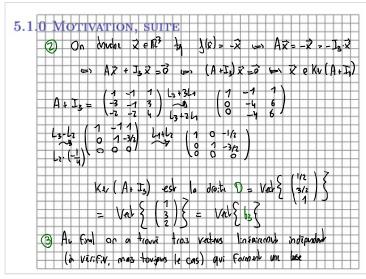
Autrement dit

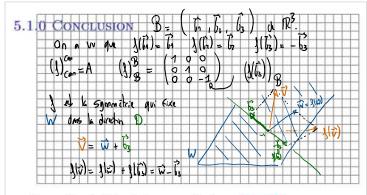
Autrement dit

or il existe des vecteurs
$$\overrightarrow{x} \in \mathbb{R}^3$$
 tels que $\overrightarrow{Ax} = \overrightarrow{x}$;

$$\textbf{0} \ \ \text{il existe des vecteurs} \ \overrightarrow{x} \in \mathbb{R}^3 \ \text{tels que } A\overrightarrow{x} = -\overrightarrow{x}. \ \underline{\varrho_X}. \ \frac{1}{2} \left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)$$







La matrice de f dans la base nouvelle $\mathcal B$ est diagonale!

- Elle est plus parlante géométriquement.
- Elle est plus facile à manipuler algébriquement, par exemple pour calculer ses puissances.

5.1.1 Valeurs propres et vecteurs propres

Soit A une matrice carrée de taille $n \times n$.

DÉFINITION

Un vecteur non nul \overrightarrow{x} de \mathbb{R}^n est un vecteur propre de A s'il existe un nombre λ tel que $A\overrightarrow{x}=\lambda\overrightarrow{x}$. On appelle alors— λ une valeur propre de A. L'espace propre E_λ est formé de TOUS les vecteurs \overrightarrow{x} tels que $A\overrightarrow{x}=\lambda\overrightarrow{x}$.

Attention! Pour tout $\lambda \in \mathbb{R}$ on a $\overrightarrow{A0} = \lambda \overrightarrow{0}$. Il est crucial de demander que \overrightarrow{x} soit non nul! Une valeur propre est une denrée rare! Par contre $\overrightarrow{0} \in E_{\lambda}$.

DÉFINITION

Soit $T: V \to V$ une application linéaire. Un vecteur non nul $x \in V$ est un vecteur propre de T si $T(x) = \lambda x$.

5.1.2 Comparaison

Soit V un espace vectoriel et $\mathcal B$ une base. Soit $T:V\to V$ une application linéaire.

5.1.2 Comparaison

Soit V un espace vectoriel et $\mathcal B$ une base. Soit $T:V\to V$ une application linéaire.

Soit $A = (T)^{\mathfrak{B}}_{\mathfrak{B}}$ la matrice de T dans la base \mathfrak{B} .

5.1.2 Comparaison

Soit V un espace vectoriel et $\mathcal B$ une base. Soit $T:V\to V$ une application linéaire.

Soit $A = (T)^{\mathfrak{B}}_{\mathfrak{B}}$ la matrice de T dans la base \mathfrak{B} .

PROPOSITION

Un vecteur x est un vecteur propre de T pour la valeur propre λ si et seulement si $(x)_{\mathfrak{B}}$ est un vecteur propre de A pour la même valeur propre λ .

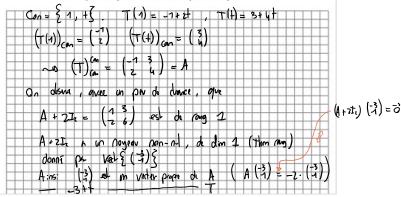
Preuve. $A(x)_{B} = (T)_{B}^{B}(x)_{B} = (T(x))_{B}$.

Ainsi $T(x) = \lambda x$ si et seulement si $A(x)_{\mathcal{B}} = \lambda(x)_{\mathcal{B}}$

5.1.2 Exemple

Soit $T: \mathbb{P}_1 \to \mathbb{P}_1$ l'application linéaire définie par

$$T(a+bt) = -a + 3b + (2a + 4b)t$$



5.1.1 Exemple, suite

Essyons de voir ce qui se passe uve la pavalle loce

$$G = \{-3+1, + \} = \{P_4, P_4\} \text{ de } P_4\}$$

$$T(P_4) = -2P_4 \qquad T(P_4)=T(P_4)=3+4+=-(-3+1)+5+=-1+P_4+5+P_4$$

$$(T)^3_{13} = (-2-1)=13 \qquad \text{pass parcere diagonale}, \text{mass translave!}$$

$$(T(P_4))_{13}, (T(P_4))_{13})$$
Calia nous orde à voir que 5 ast ones: voe value propre car

$$Var (B-5I_2)=Kv(-\frac{3}{2}-\frac{1}{2})=Val \{-\frac{1}{2}\}$$
Ains: $(\frac{1}{4})$ est un vectur propre de B , la notitie de A

dans la line A

dans la line A

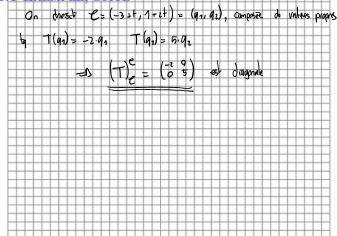
verter propre de A .

Mass orlars A

1 + zt est ousé un vectur propre de A .

Mass orlars A

5.1.1 EXEMPLE, SUITE



5.1.3 Valeurs propres et noyaux

PROPOSITION

Un nombre λ est valeur propre de A si et seulement si le noyau de $A-\lambda I_n$ est non nul.

5.1.3 Valeurs propres et noyaux

PROPOSITION

Un nombre λ est valeur propre de A si et seulement si le noyau de $A-\lambda I_n$ est non nul.

Preuve. Si λ est valeur propre de A, il existe un vecteur non nul \overrightarrow{x} tel que $A\overrightarrow{x} = \lambda \overrightarrow{x}$. Autrement dit

5.1.3 Valeurs propres et noyaux

PROPOSITION

Un nombre λ est valeur propre de A si et seulement si le noyau de $A-\lambda I_n$ est non nul.

Preuve. Si λ est valeur propre de A, il existe un vecteur non nul \overrightarrow{x} tel que $A\overrightarrow{x} = \lambda \overrightarrow{x}$. Autrement dit

$$\overrightarrow{0} = A\overrightarrow{x} - \lambda \overrightarrow{x} = A\overrightarrow{x} - \lambda I_n \overrightarrow{x} = (A - \lambda I_n) \overrightarrow{x}$$

par distributivité de la multiplication matricielle. Ainsi un vecteur propre est une solution non nulle de l'équation homogène $(A-\lambda I_n)\overrightarrow{x}=\overrightarrow{0}\,.$

5.1.3 Valeurs propres et noyaux

PROPOSITION

Un nombre λ est valeur propre de A si et seulement si le noyau de $A-\lambda I_n$ est non nul.

Preuve. Si λ est valeur propre de A, il existe un vecteur non nul \overrightarrow{x} tel que $A\overrightarrow{x} = \lambda \overrightarrow{x}$. Autrement dit

$$\overrightarrow{0} = A\overrightarrow{x} - \lambda \overrightarrow{x} = A\overrightarrow{x} - \lambda I_n \overrightarrow{x} = (A - \lambda I_n) \overrightarrow{x}$$

par distributivité de la multiplication matricielle. Ainsi un vecteur propre est une solution non nulle de l'équation homogène $(A-\lambda I_n)\overrightarrow{x}=\overrightarrow{0}$. En conclusion un vecteur propre existe pour λ si et seulement si $\operatorname{Ker}(A-\lambda I_n)$ est non nul.

5.1.3 Valeurs propres et noyaux

REMARQUE

Chercher une valeur propre λ de la matrice $A \in M_{n \times n}(\mathbb{R})$ revient à chercher un nombre λ tel que $\operatorname{Ker}(A - \lambda I_n)$ est de dimension ≥ 1 . Par le Théorème du rang, ceci revient à chercher λ avec $\operatorname{rang}(A - \lambda I_n) < n$, ou encore $A - \lambda I_n$ non inversible.