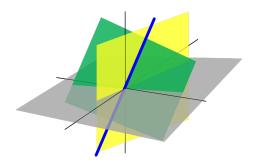
Algèbre Linéaire

Cours du 7 novembre

Jérôme Scherer



5.4.1 Une application linéaire

Soit W le sous-espace vectoriel de $M_{2\times 2}(\mathbb{R})$ des matrices triangulaires supérieures, avec la base choisie $\mathfrak{B}=(e_{11},e_{12},e_{22})$.

On considère $T:\mathbb{P}_2 o W$ l'application linéaire définie par

$$\left(T(p) \right)_{\mathcal{B}} = \begin{pmatrix} p(1) & p(-1) \\ p(2) \end{pmatrix} \qquad T(p) = \begin{pmatrix} p(1) & p(-1) \\ 0 & p(2) \end{pmatrix} = p(1) \cdot e_{11} + p(2) \cdot e_{22}$$

En choisissant la base canonique $\mathbb{C}an = (1, t, t^2)$ on identifie \mathbb{P}_2 avec \mathbb{R}^3 et en choisissant la base ci-dessus de W on identifie W avec \mathbb{R}^3 également.

Pour associer à T une matrice on calcule les images des vecteurs de la base Can et on les exprime en coordonnées dans la base B.

5.4.1 Les images des vecteurs de base

$$\mathcal{T}(1) = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) = \mathcal{W}_1 ext{ et } (\mathcal{W}_1)_{\mathcal{B}} = \left(egin{array}{cc} 1 \ 1 \ 1 \end{array}
ight)$$

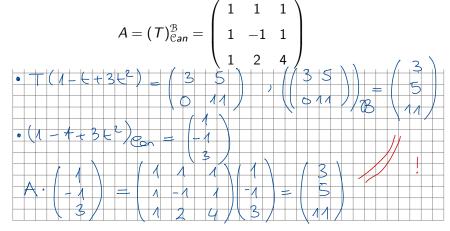
$$\mathcal{T}(t)=\left(egin{array}{cc} 1 & -1 \ 0 & 2 \end{array}
ight)=W_2 ext{ et } (W_2)_{\mathcal{B}}=\left(egin{array}{c} 1 \ -1 \ 2 \end{array}
ight)$$

$$\mathcal{T}(t^2)=\left(egin{array}{cc} 1 & 1 \ 0 & 4 \end{array}
ight)=W_3 ext{ et } (W_3)_{\mathbb{B}}=\left(egin{array}{c} 1 \ 1 \ 4 \end{array}
ight)$$

But : Calculer l'image par T du polynôme $1 - t + 3t^2$, de deux manières.

5.4.1 La matrice de T

On représente T, après avoir choisi les bases Can de \mathbb{P}_2 et \mathcal{B} de W, par la matrice dont les colonnes sont les images des vecteurs de la base Can exprimés en coordonnées dans la base \mathcal{B} .



5.4.2 La matrice d'une application linéaire

- V est un espace vectoriel muni d'une base $\mathfrak{B}=(e_1,\ldots,e_n)$,
- W est un espace vectoriel muni d'une base $\mathbb{C}=(f_1,\ldots,f_m)$,
- $T: V \to W$ est une application linéaire.

DÉFINITION

La matrice A de T (pour ce choix de bases) est la matrice $(T)_{\mathcal{B}}^{\mathcal{C}}$ de taille $m \times n$ dont les colonnes sont $(Te_1)_{\mathcal{C}}, \ldots, (Te_n)_{\mathcal{C}}$.

SLOGAN

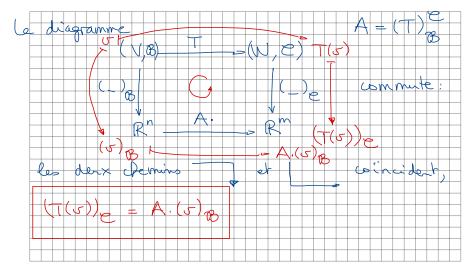
On place dans les colonnes de $(T)^{\mathbb{C}}_{\mathfrak{B}}$ les images des vecteurs de la base \mathfrak{B} exprimées en coordonnées dans la base \mathfrak{C} .

Proposition

$$(T)^{\mathfrak{C}}_{\mathfrak{B}}(v)_{\mathfrak{B}} = (Tv)_{\mathfrak{C}}.$$

5.4.2 Illustration.

Cette formule dit en fait que les deux chemins possibles pour aller d'un coin à l'autre du carré suivant donnent le même résultat :



5.4.2 PREUVE. 1 On calcule er x_n del de. + 2 JC 1 linearité de (Pineaire 212,+ +x, e, de par

5.4.2 Un cas connu

REMARQUE

Lorsque $V=\mathbb{R}^n$, $W=\mathbb{R}^m$ et que les bases choisies sont les bases canoniques, la matrice d'une application linéaire $T:\mathbb{R}^n\to\mathbb{R}^m$ est la matrice de T au sens du chapitre 1.9.

En effet $(T)_{\mathcal{C}an}^{\mathcal{C}an}$ est par définition la matrice dont les colonnes sont les images $T(\overrightarrow{e}_1), \ldots, T(\overrightarrow{e}_n)$, exprimées en coordonnées par rapport à la base $\mathcal{C}an$. Or, les coordonnées d'un vecteur de \mathbb{R}^m par rapport à la base canonique sont simplement ses coefficients.

5.4.2 Exemple: Une rotation

Soit $r: \mathbb{R}^2 \to \mathbb{R}^2$ la rotation de centre (0;0) et d'angle $\pi/2$.

Nous connaissons
$$(r)_{\text{Can}}^{\text{Can}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

Mais, si on choisit la base canonique pour l'espace vectoriel de départ \mathbb{R}^2 , et à l'arrivée la nouvelle base \mathbb{C} donnée par

$$\overrightarrow{f}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \overrightarrow{f}_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$r(\overrightarrow{e}_1) = \overrightarrow{f}_1$$
 et $r(\overrightarrow{e}_2) = \overrightarrow{f}_2$

$$(r(e_1)_{e_1}, r(e_2)_{e_2}) = (r)_{e_{an}}^e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

5.4.2 Conclusion

On perd trop d'information lorsqu'on permet de choisir des bases arbitraires au départ et à l'arrivée.

FAIT

La seule information qui reste est le rang de l'application linéaire : deux matrices de même taille et de même rang représentent la même application linéaire.

DÉCISION

Pour étudier des applications linéaires $T:V\to V$ nous choisirons une seule base de V, la même pour l'espace vectoriel de départ et d'arrivée.

But. Trouver la meilleure base pour comprendre T.

4.7.1 Changement de base

- V est un espace vectoriel,
- $\mathcal{B} = (e_1, \dots, e_n)$ est une base de V,
- $C = (f_1, \ldots, f_n)$ est une base de V.

DÉFINITION

La matrice de changement de base de \mathcal{B} vers \mathcal{C} est la matrice $(Id_V)^{\mathcal{C}}_{\mathcal{B}}$ de taille $n \times n$ dont les colonnes sont $(e_1)_{\mathcal{C}}, \ldots, (e_n)_{\mathcal{C}}$.

La matrice de changement de base est donc la matrice de l'application linéaire identité, mais pour des choix différents en général de base au départ et à l'arrivée. Ici $Id_V(e_i)=e_i$.

Question. Pourquoi cette matrice mérite-t-elle le nom de matrice de *changement de base*?

4.7.2 Théorème du changement de base

La matrice de changement de base permet de calculer les coordonnées dans la nouvelle base ${\mathfrak C}$ si on connaît celles dans l'ancienne base ${\mathfrak B}$.

THÉORÈME

$$(Id_V)^{\mathbf{c}}_{\mathfrak{B}}(v)_{\mathfrak{B}}=(v)_{\mathbf{c}}$$

Preuve. Cela découle du résultat plus général démontré ci-dessus ! En effet

$$(Id_V)^{\mathfrak{C}}_{\mathfrak{B}}(v)_{\mathfrak{B}} = (Id_V(v))_{\mathfrak{C}} = (v)_{\mathfrak{C}}$$

4.7.2 EXEMPLE. (1) (1)
$$C_{1} = C_{2} = C_{3}$$
 (1) $C_{2} = C_{3} = C_{4}$ (2) $C_{3} = C_{4} = C_{4}$ (2) $C_{4} = C_{4} = C_{4}$ (2) $C_{5} = C_{5} = C_{5}$

5.4.2 La matrice d'une application linéaire

- V est un espace vectoriel muni d'une base $\mathfrak{B}=(e_1,\ldots,e_n)$,
- W est un espace vectoriel muni d'une base $\mathbb{C}=(f_1,\ldots,f_m)$,
- $T: V \to W$ est une application linéaire.

DÉFINITION

La matrice A de T (pour ce choix de bases) est la matrice $(T)_{\mathcal{B}}^{\mathcal{C}}$ de taille $m \times n$ dont les colonnes sont $(Te_1)_{\mathcal{C}}, \ldots, (Te_n)_{\mathcal{C}}$.

SLOGAN

On place dans les colonnes de $(T)^{\mathbb{C}}_{\mathfrak{B}}$ les images des vecteurs de la base \mathfrak{B} exprimées en coordonnées dans la base \mathfrak{C} .

Proposition

$$(T)^{\mathfrak{C}}_{\mathfrak{B}}(v)_{\mathfrak{B}} = (Tv)_{\mathfrak{C}}.$$

5.4.3 LA COMPOSITION

- Soit U un espace vectoriel munis d'une base \mathfrak{B} ,
- \circ soit V un espace vectoriel munis d'une base \circ , et
- \odot soit W un espace vectoriel munis d'une base \mathfrak{D} .
- lacksquare Soit S:U o V une application linéaire, et
- **o** soit $T: V \to W$ une application linéaire.

PROPOSITION

Les matrices $(T \circ S)^{\mathcal{D}}_{\mathcal{B}}$ et $(T)^{\mathcal{D}}_{\mathcal{C}} \cdot (S)^{\mathcal{C}}_{\mathcal{B}}$ sont égales.

La raison en est que la multiplication matricielle a été définie pour qu'elle corresponde à la composition!

5.4.3 PREUVE 181 **'**Þ Rm R B Centons B 3 Ø ance, 3 egalité maie 00 W partialier pour whome de A EC B de lenne

5.4.3 Exemple

- Soit h une homothétie de rapport 3 dans \mathbb{R}^3 et
- ② p la projection orthogonale sur le plan π d'équation x + y + z = 0.

Rappel: Distance d'un point à un plan

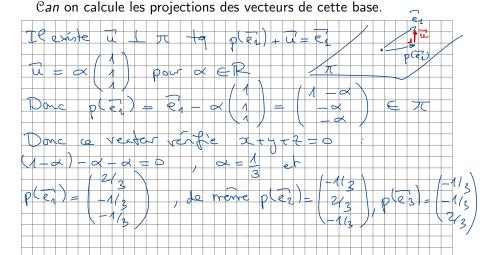
La distance de (x_0, y_0, z_0) au plan ax + by + cz = 0 vaut

$$\frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}$$

Le vecteur
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 est orthogonal au plan $ax + by + cz = 0$.

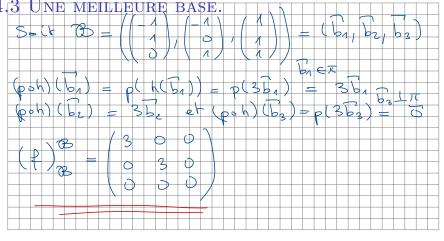
5.4.3 Exemple, suite.

Dans la base canonique Can la matrice $H=(h)^{Can}_{Can}$ est diagonale avec des 3 dans la diagonale. Pour trouver la matrice P de p, dans



5.4.3 EXEMPLE: LA MATRICE A DE f Car manice de Tarry 9 کف 10 LY Tang A popor honne cara

dans T



L'interprétation géométrique de f est plus transparente dans cette base. On voit que f dilate les vecfeurs \overrightarrow{b}_1 et \overrightarrow{b}_2 d'un facteur 3 et envoie \overrightarrow{b}_3 sur zéro.

4.7.1, 4.7.2 Changement de base, rappel

- V est un espace vectoriel,
- $\mathcal{B} = (e_1, \dots, e_n)$ est une base de V,
- $\mathcal{C} = (f_1, \dots, f_n)$ est une base de V.

DÉFINITION

La matrice de changement de base de \mathcal{B} vers \mathcal{C} est la matrice $(Id_V)^{\mathcal{C}}_{\mathcal{B}}$ de taille $n \times n$ dont les colonnes sont $(e_1)_{\mathcal{C}}, \ldots, (e_n)_{\mathcal{C}}$.

La matrice de changement de base permet de calculer les coordonnées dans la nouvelle base $\mathcal C$ si on connaît celles dans l'ancienne base $\mathcal B$.

THÉORÈME

$$(Id_V)^{\mathfrak{C}}_{\mathfrak{B}}(v)_{\mathfrak{B}}=(v)_{\mathfrak{C}}$$

4.7.3 Inverse de changement de base

THÉORÈME

$$\left[\left((\mathit{Id}_{V})_{\mathbb{B}}^{\mathfrak{C}}\right)^{-1}=(\mathit{Id}_{V})_{\mathbb{C}}^{\mathfrak{B}}\right]$$

Preuve. La matrice $P=(Id_V)^{\mathbb{C}}_{\mathcal{B}}$ est inversible car ses colonnes sont linéairement indépendantes (base). On sait aussi que

$$P(x)_{\mathcal{B}} = (x)_{\mathcal{C}}$$

Multiplions cette égalité à gauche par P^{-1} :

$$(x)_{\mathcal{B}} = P^{-1}P(x)_{\mathcal{B}} = P^{-1}(x)_{\mathcal{C}}$$

Ainsi P^{-1} transforme un vecteur en coordonnées dans ${\mathfrak C}$ en coordonnées dans ${\mathfrak B}$!

4.7.3 Exemple

On considère les bases $\mathcal{B}=(\overrightarrow{b}_1,\overrightarrow{b}_2)$ et $\mathcal{C}=(\overrightarrow{c}_1,\overrightarrow{c}_2)$ de \mathbb{R}^2 où

$$\overrightarrow{b}_1 = \begin{bmatrix} -1 \\ 8 \end{bmatrix} \overrightarrow{b}_2 = \begin{bmatrix} 1 \\ -7 \end{bmatrix} \overrightarrow{c}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \overrightarrow{c}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

On écrit la matrice "doublement augmentée" pour résoudre deux systèmes à la fois :

$$\left[\begin{array}{cc|cc}
1 & 1 & -1 & 1 \\
2 & 1 & 8 & -7
\end{array}\right]$$

car on cherche à savoir comment exprimer les vecteurs de la base \mathcal{B} comme combinaisons linéaires des vecteurs de la base \mathcal{C} .

4.7.3 Exemple, suite

