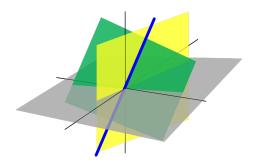
ALGÈBRE LINÉAIRE COURS DU 31 OCTOBRE

Jérôme Scherer



4.2.2 Rappel et nouveauté : Noyau et image

Soit $T: V \to W$ une application linéaire.

DÉFINITION

Le noyau de T est le sous-ensemble $\operatorname{Ker} T = \{ v \in V \mid Tv = 0 \}.$

DÉFINITION

L'image d'une application linéaire $T:V\to W$ est le sous-ensemble $\operatorname{Im} T=\{w\in W\,|\, \text{il existe }v\in V\text{ tel que }Tv=w\}.$

REMARQUE

- Le concept de noyau généralise la notion de solution générale d'un système homogène.
- 2 Le concept d'image généralise la notion du sous-espace ColA engendré par les colonnes d'une matrice A.

4.2.2 Un autre exemple.

Soit A une matrice de taille $n \times n$ et $T : \mathbb{R}^n \to \mathbb{R}$ l'application $T(\overrightarrow{x}) = \det(A_n(\overrightarrow{x}))$ (le déterminant de la matrice A dont on remplacé la dernière colonne par \overrightarrow{x}). On appelle $\overrightarrow{a}_1, \ldots, \overrightarrow{a}_{n-1}$ les (n-1) premières colonnes de A.

- Si $\overrightarrow{a}_1, \ldots, \overrightarrow{a}_{n-1}$ sont liés, alors $T(\overrightarrow{x}) = 0$ pour tout \overrightarrow{x} , si bien que le noyau de T est \mathbb{R}^n .
- ② Sinon, $T(\overrightarrow{x}) = 0$ si et seulement si \overrightarrow{x} est linéairement dépendant de $\overrightarrow{a}_1, \ldots, \overrightarrow{a}_{n-1}$, car sinon les n colonnes de $A_n(\overrightarrow{x})$ sont libres et le déterminant est non nul. Ainsi $\operatorname{Ker} T = \operatorname{Vect}\{\overrightarrow{a}_1, \ldots, \overrightarrow{a}_{n-1}\}.$

4.2.3 LE NOYAU EST UN SOUS-ESPACE

Exemple. Soit $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$ l'application définie par

$$T\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}c\\a-d\end{array}\right)$$

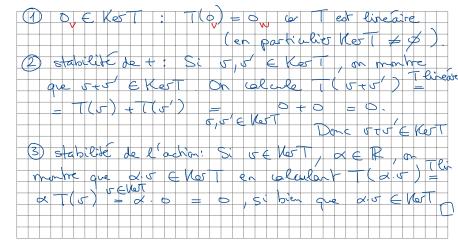
On vérifie que T est linéaire. Le noyau de T est un sous-ensemble de $M_{2\times 2}(\mathbb{R})$. Lequel ? C'est le sous-espace de $M_{2\times 2}(\mathbb{R})$

$$\operatorname{Ker} \mathcal{T} = \{ \left(egin{array}{cc} a & b \ 0 & a \end{array}
ight) \mid a,b \in \mathbb{R} \}$$

THÉORÈME

Soit $T:V \to W$ une application linéaire. Alors $\operatorname{Ker} T$ est un sous-espace de V.

4.2.3 Preuve.



CRITÈRE D'INJECTIVITÉ

Soit $T: V \to W$ une application linéaire. Alors T est inective si et seulement si $\operatorname{Ker} T = \{0\}$.

4.2.4 CALCUL DU NOYAU AVEC GAUSS

REMARQUE

Lors du calcul d'un noyau on est souvent amené à résoudre un système d'équations homogène. La méthode de Gauss et la description de la solution générale sous forme paramétrique fournit alors un système de générateurs linéairement indépendants.

Exemple. On considère $T: \mathbb{R}^4 \to \mathbb{R}^2$ donnée par

$$T\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x - y + z - w \\ x - y - z + w \end{pmatrix}. \quad \text{Trance cot}$$

$$A = \begin{pmatrix} 1 - 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}$$

$$T\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad T\begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad T\begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} = T\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$$

4.2.4 EXEMPLE. est sypton donne _ Ves A Vect 20 base de HerA cause des

4.2.5 L'IMAGE

DÉFINITION

L'image d'une application linéaire $T:V\to W$ est le sous-ensemble $\operatorname{Im} T=\{w\in W\,|\, \mathrm{il\ existe}\ v\in V\ \mathrm{tel\ que}\ Tv=w\}.$

REMARQUE

Le concept d'image généralise la notion du sous-espace ColA engendré par les colonnes d'une matrice A.

En effet, si $T: \mathbb{R}^n \to \mathbb{R}^m$ est représentée par une matrice A de taille $m \times n$, l'image de T est alors l'ensemble des combinaisons linéaires des colonnes de A puisque

$$T(\overrightarrow{x}) = A\overrightarrow{x} = x_1\overrightarrow{a}_1 + \cdots + x_n\overrightarrow{a}_n$$

4.2.5 L'IMAGE

DÉFINITION

L'image d'une application linéaire $T:V\to W$ est le sous-ensemble $\operatorname{Im} T=\{w\in W\,|\, \mathrm{il\ existe}\ v\in V\ \mathrm{tel\ que}\ Tv=w\}.$

REMARQUE

Le concept d'image généralise la notion du sous-espace ColA engendré par les colonnes d'une matrice A.

En effet, si $T: \mathbb{R}^n \to \mathbb{R}^m$ est représentée par une matrice A de taille $m \times n$, l'image de T est alors l'ensemble des combinaisons linéaires des colonnes de A puisque

$$\overrightarrow{Ax} = x_1 \overrightarrow{a}_1 + \cdots + x_n \overrightarrow{a}_n$$

On parle alors de l'image de A que l'on note Im A.

4.2.5 Exemple

Considérons un exemple du type de ceux que nous avons étudié dans le Chapitre 1.

Exemple. Soit $T: \mathbb{R}^3 \to \mathbb{R}^4$ l'application définie par

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-2b+c \\ -a-c \\ b+2a+2c \\ -b \end{pmatrix}$$

On voit que T est linéaire puisque T est représentée par une matrice.

Les colonnes de cette matrice sont les images des vecteurs de la base canonique.

4.2.5 Exemple, suite

SUITE
$$T(e_1)$$
 $T(e_2)$ $T(e_3) = T(e_4)$

$$A = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 0 & -1 \\ 2 & 1 & 2 \\ 0 & -1 & 0 \end{pmatrix}$$

Par conséquent l'image de \mathcal{T} est un sous-ensemble de \mathbb{R}^4 . Lequel ?

$$\operatorname{Im} A = \operatorname{Im} T = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\} = \operatorname{Cd} A.$$

$$\operatorname{Im} C = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\} = \operatorname{Cd} A.$$

4.2.6 L'IMAGE EST UN SOUS-ESPACE

THÉORÈME

Soit $T:V\to W$ une application linéaire. Alors $\operatorname{Im} T$ est un sous-espace de W.

Remarque

Soit $T:V\to W$ une application linéaire. Alors $\operatorname{Ker} T$ est un sous-espace de V, mais $\operatorname{Im} T$ est un sous-espace de W.

Preuve. On voit d'abord que 0 = T(0) appartient à l'image. Il reste à montrer la stabilité de la somme et de l'action. Traitons le cas de la somme. Soient donc w, w' deux vecteurs de $\operatorname{Im} T$. Nous devons montrer que w + w' aussi appartient à $\operatorname{Im} T$.

4.2.6 SUITE. dence il existe v, v E On sair ک رکل que Dowit on slale er por linear 5 + 5 W _ Tm : xemple: projection or Regende RZ dro tella ea عه ا 16 Colonnes Ved

4.2.6 Exemple.

Soit $D: \mathbb{P}_3 \to \mathbb{P}_3$ la dérivation, D(p) = p'.

• KeTD =
$$AP \in P_3$$
 $P' = 0$ $P = 4$ $a \in P_3$ $a \in P_3$

4.2.7 MÉTHODE DE CALCUL

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire, représentée par une matrice $A \in M_{m \times n}(\mathbb{R})$.

- Pour calculer le noyau de T on échelonne et réduit la matrice A selon les lignes.
- Pour calculer l'image de T on ne garde que les colonnes-pivot. Si nécessaire on échelonne et réduit A selon les colonnes.

ESPACE-COLONNE

On appelle parfois espace-colonne le sous-espace ColA engendré par les colonnes de A. Il s'agit donc de ImA!

4.2.7 Explication

Soit $A \in M_{m \times n}(\mathbb{R})$, et B la matrice échelonnée associée.

Si une colonne n'a pas de pivot, le système $A\overrightarrow{x} = \overrightarrow{0}$ a une infinité de solutions (les mêmes que $B\overrightarrow{x} = \overrightarrow{0}$), on peut écrire

$$x_1 \overrightarrow{a}_1 + \dots + x_n \overrightarrow{a}_n = \overrightarrow{0}$$
 $\Leftrightarrow \alpha_1 \overrightarrow{b}_1 + \dots + \alpha_n \overrightarrow{b}_n = \overrightarrow{0}$

La colonne sans pivot est combinaison linéaire des autres colonnes.

IMPORTANT

Les colonnes de A vérifient les mêmes relations de dépendance linéaire que celles de B.

On peut donc enlever une telle colonne pour engendrer $\operatorname{Col} A = \operatorname{Im} A$. Les k colonnes-pivot restantes de A sont libres puisque la matrice $m \times k$ formée de ces k colonnes a k pivots.

4.2.7 Exemple

Considérons la matrice
$$A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
.

Nous voulons calculer le noyau et l'image de A, c'est-à-dire le noyau et l'image de l'application linéaire $T:\mathbb{R}^4\to\mathbb{R}^4$ donnée par $T\overrightarrow{x}=A\overrightarrow{x}$.

Nous utilisons donc la méthode Gauss, pour simultanément construire une base du noyau de A et extraire une base de l'espace-colonnes ColA = ImA.

4.2.7 SUITE. 0 une droise, di Ver A = 1 colones prot de A de A pas de

4.2.8 Exemple

Soit $T:M_{2 imes 2}(\mathbb{R}) o M_{2 imes 2}(\mathbb{R})$ défini par

$$T(A) = A + A^T$$

Nous savons que T est linéaire puisque $()^T$ linéaire

(1)
$$T(A+B) = (A+B) + (A+B)^{T} = A+B+A^{T}+B^{T} = A+A^{T}+B+B^{T} = A+B+A^{T}+B^{T} = A+B+A^{T}+B^{T} = A+B+A^{T}+B^{T} = A+B+A^{T}+B^{T} = A+A^{T}+B^{T} = A+B^{T}+B^{T} = A+B^{T}+B^{T}+B^{T} = A+B^{T}+B^{T}+B^{T} = A+B^{T}+B$$

De même, pour tout $\alpha \in \mathbb{R}$, on a

(2)
$$T(\alpha A) = \alpha A + (\alpha A)^T = \alpha A + \alpha A^T = \alpha (A + A^T) = \alpha T(A)$$

4.2.8 Quel est le noyau de T?

Il s'agit des matrices A telles que $A + A^T = 0$. En "dollars" si

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, alors

$$T(A) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 2a & b+c \\ c+b & 2d \end{pmatrix}$$

Cette matrice est la matrice nulle si et seulement si a = d = 0 et

b+c=0. En d'autres termes

$$A = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\text{Ker } T = \text{Vect} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} \quad \text{we shall define the definition}$$

4.2.8 Quelle est l'image de T?

L'image de T est constituée de toutes les matrices de la forme

$$\begin{pmatrix} 2a & b+c \\ c+b & 2d \end{pmatrix} = 2a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + (b+c) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + 2d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

où a, b, c, d peuvent prendre des valeurs arbitraires. Ainsi

$$\operatorname{Im} T = \operatorname{Vect} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \quad \text{div} \quad 3$$

5.4.0. La matrice d'une application linéaire

- V est un espace vectoriel muni d'une base $\mathcal{B}=(e_1,\ldots,e_n)$,
- W est un espace vectoriel muni d'une base $\mathcal{C} = (f_1, \dots, f_m)$,
- $T: V \to W$ est une application linéaire.

DÉFINITION

La matrice A de T (pour ce choix de bases) est la matrice $(T)^{\mathcal{C}}_{\mathcal{B}}$ de taille $m \times n$ dont les colonnes sont $(Te_1)_{\mathcal{C}}, \ldots, (Te_n)_{\mathcal{C}}$.

SLOGAN

On place dans les colonnes de $(T)^{\mathbb{C}}_{\mathfrak{B}}$ les images des vecteurs de la base \mathfrak{B} exprimées en coordonnées dans la base \mathfrak{C} .

Proposition

$$(T)^{\mathfrak{C}}_{\mathfrak{B}}(v)_{\mathfrak{B}} = (Tv)_{\mathfrak{C}}.$$

4.2.8MATRICE Dolsir R11, R12 Comme (211 R12+ C21 e22 e 22 Nes **1** റ -pas pivor Dow

4.2.9 Critère d'injectivité, rappel

Le critère d'injectivité d'une application linéaire permet de ramener la démonstration de l'injectivité au calcul du noyau. Le noyau mesure donc le défaut d'injectivité.

PROPOSITION

Une application linéaire $T:V\to W$ est injective si et seulement si $\operatorname{Ker} T=\{0\}.$

4.6.1 Espaces-lignes: LgnA

Soit A et B deux matrices de taille $m \times n$. On note $A \sim B$ quand elles sont équivalentes selon les lignes.

THÉORÈME

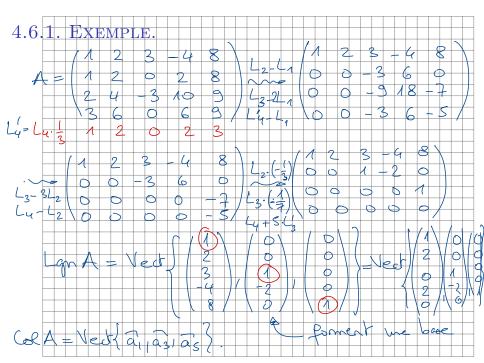
Si $A \sim B$, alors les lignes de A et B engendrent le même sous-espace de \mathbb{R}^n .

Pourquoi ? Les opérations élémentaires produisent de nouvelles lignes qui sont combinaisons linéaires des précédentes.

THÉORÈME

Les lignes d'une forme échelonnée de *A* forment une base du sous-espace engendré par les lignes de *A*.

Pourquoi ? Aucune ligne non nulle de la forme échelonnée ne peut être combinaison linéaire des autres (à cause de son pivot).



4.6.1 Espaces-colonnes : ColA

Soit A une matrices de taille $m \times n$.

THÉORÈME

Les colonnes pivots de A forment une base de ColA = Im A.

Pourquoi ? Si une colonne de A est combinaison linéaire d'autres colonnes, alors la même combinaison linéaire se retrouve pour les colonnes d'une matrice $B \sim A$.

Si B est une forme échelonnée de A, alors les colonnes-pivots sont libres et les autres colonnes sont combinaisons linéaires des colonnes pivots.

Il en va donc de même pour les colonnes de A.

4.6.1 Remarque importante

Soit A une matrice de taille $m \times n$.

THÉORÈME

$$\dim \operatorname{Col} A = \dim \operatorname{Lgn} A$$

- Le nombre de lignes linéairement indépendantes est égal au nombre de lignes contenant un pivot.
- 2 Le nombre de colonnes linéairement indépendantes est égal au nombre de colonnes contenant un pivot.
- **3** En résumé, $\dim \operatorname{Col} A = \dim \operatorname{Lgn} A$ car les deux dimensions coïncident avec le nombre de pivots!