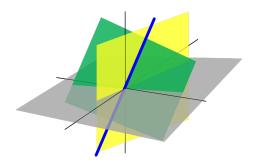
Algèbre Linéaire

Cours du 3 octobre

Jérôme Scherer



2.2.4 Propriétés de l'inverse, rappel

Propriétés

Soient A et B des matrices carrées $n \times n$ inversibles et $\lambda \in \mathbb{R}^*$.

- $(A^{-1})^{-1} = A$;
- $(AB)^{-1} = B^{-1}A^{-1};$
- $(A^T)^{-1} = (A^{-1})^T$;
- **a** $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$

Attention! Pour que ces propriétés soient vraies, il faut que les matrices soient carrées. En effet

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 2 \end{array}\right) = \left(\begin{array}{c} 3 \end{array}\right)$$

est inversible, mais les matrices de départ ne le sont pas.

PREUVE. inversible exist par definition a est mania A la manice inverse de est que ash calcular B white B investil A inversible inversible '⊘√l alule montres propriété Pour de ampahbilité product achon de meme antre product. now

2.2.5 L'inverse d'une matrice 2×2

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Alors

- A est inversible si et seulement si :
- A représente une application linéaire bijective, si et seulement si:
- les colonnes de A ne sont pas proportionnelles, si et seulement

ad ≠ bc.
 diagorde anhidiagorde

2.2.5 L'inverse d'une matrice 2×2

DÉFINITION

Le déterminant de la matrice A est le nombre réel det A = ad - bc.

Nous avons vu qu'une matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement son déterminant ad - bc est différent de zéro.

Lorsque det $A \neq 0$, l'inverse est donné par

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

on a transposé les terres de la diagorde on a largé le sipre dans l'anhidiagorde.

d -6 PREUVE. cal cule On LetA 0 de L de 0 d da detA O detA + ad derA φ 11/2 Non-Exemples sont inversibles lur determinant vant 6 praviles projection dairement de des rerosibles applications non

EXEMPLES.

2.2.6 Matrices élémentaires de type I

DÉFINITION

Soient $1 \le i, j \le n$. La matrice élémentaire de type I $E_{ij}(\lambda)$ pour $i \ne j$ et $\lambda \in \mathbb{R}$ est la matrice carrée dont les coefficients diagonaux sont égaux à 1, le coefficient (i,j) vaut λ et tous les autres coefficients sont nuls.

Sans le savoir nous n'avons cessé de faire des multiplications matricielles dès le début du cours!

PROPOSITION

Multiplier une matrice A à gauche par $E_{ij}(\lambda)$ correspond à ajouter λ fois la j-ème ligne à la i-ème.

EXEMPLE. 92 а 64 an 92 a 3 α inversible emarque inverse est $\leq c \neq j$

2.2.6 Matrices élémentaires de type II

DÉFINITION

La matrice élémentaire de type II E_{ij} pour $i \neq j$ est la matrice carrée I_n dont on a échangé les lignes i et j.

Sans le savoir nous n'avons cessé de faire des multiplications matricielles dès le début du cours!

PROPOSITION

Multiplier une matrice A à gauche par E_{ij} correspond à échanger les j-ème et i-ème lignes.

EXEMPLE. a C a 96 62 64 6 inversible e masque et dex revient

2.2.6 Matrices élémentaires de type III

DÉFINITION

La matrice élémentaire de type III $E_i(\lambda)$ pour $1 \leq i \leq n$ et $\lambda \in \mathbb{R}^{+}$ est la matrice diagonale dont les coefficients diagonaux sont égaux à 1, sauf le i-ème qui vaut λ .

Sans le savoir nous n'avons cessé de faire des multiplications matricielles dès le début du cours!

PROPOSITION

Multiplier une matrice A à gauche par $E_i(\lambda)$ correspond à multiplier par λ la i-ème ligne.

EXEMPLE. a1 a a Q / 41 03 0 a 2 1364 361 362 abirorm Kemerque: eot 14 C.S. pus revient D 05 aire.

2.2.6 Matrices et opérations élémentaires

Nous avons obtenu une interprétation entièrement matricielle des trois types d'opérations introduites au début du chapitre 1.

OBSERVATION

Chaque matrice élémentaire est construite en effectuant l'opération élémentaire correspondante sur la matrice I_n .

THÉORÈME

- Une matrice carrée A de taille $n \times n$ est inversible si et seulement si elle est équivalente selon les lignes à la matrice I_n .
- ② Si A est inversible la suite d'opérations élémentaires qui transforme A en I_n transforme I_n en A^{-1} .

Une manile A est invesible escelle represente une application lineaire bijective Elle a denc in prot dans chaque ligne. Il existe denc des opérations élétrentaires sur les lignes disma k, qui wresponder a multiplier A a gaule successivened par les matrices elementaires E On a donc E. . - . E2 . E1 . I mone suite à spérations élementaires

2.2.7 Exemple

Pour calculer l'inverse de la matrice
$$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \\ 2 & 1 & 2 \end{pmatrix}$$
 on

échelonne et réduit A en effectuant simultanément les mêmes opérations sur I_3 . On place donc côte à côte les matrices A et I_3 et on commence :

$$\begin{pmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
-1 & 1 & -2 & 0 & 1 & 0 \\
2 & 1 & 2 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{L_2 + L_4}
\begin{pmatrix}
\Lambda & \Lambda & 2 & | \Lambda & 0 & 0 \\
0 & 2 & 0 & | \Lambda & \Lambda & 0 \\
0 & -1 & -2 & | -2 & 0 & \Lambda
\end{pmatrix}$$

SUITE. 2.2 1/2 0 0

REMARQUE. plus solution ec lit dan monte de la bare Colone aluler pour solutions, uniques nos inversible

2.3.1 Critères d'inversibilité, I

Propriétés équivalentes

Soil AEMnxn (R)

- A est inversible.
- lacktriangle A est équivalente selon les lignes à I_n .
- $oldsymbol{0}$ A admet n positions de pivot.
- Les colonnes de A sont linéairement indépendantes.
- **1** L'application linéaire $\overrightarrow{x} \mapsto A \overrightarrow{x}$ est injective.

Nous avons déjà compris que les propriétés (A), (B) et (C) sont équivalentes.

Les propriétés (D), (E) et (F) aussi sont équivalentes (voir le critère d'injectivité).

2.3.1 Critères d'inversibilité, II

Propriétés équivalentes

- (G) $\overrightarrow{Ax} = \overrightarrow{b}$ a au moins une solution.
- (H) Les colonnes de A engendrent \mathbb{R}^n .
- (I) L'application linéaire $\overrightarrow{x} \mapsto A \overrightarrow{x}$ est surjective.
- (J) Il existe une matrice carrée C telle que $CA = I_n$.
- (K) Il existe une matrice carrée D telle que $AD = I_n$.
- (L) La matrice transposée A^T est inversible.

Les propriétés (G), (H) et (I) aussi sont équivalentes (voir le critère de surjectivité).

Nous allons démontrer que

$$(L) \Leftrightarrow (A) \Rightarrow (J) \Rightarrow (D) \Rightarrow (C) \Rightarrow (K) \Rightarrow (G) \Rightarrow (B)$$

PREUVE. ص existe inversible Alos represente ello dam Jaque aw phoh pone