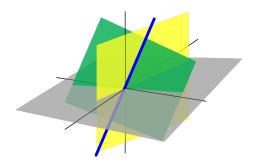
Algèbre Linéaire

Cours du 19 novembre

Jérôme Scherer



5.2.1 LE POLYNÔME CARACTÉRISTIQUE

DÉFINITION

Soit A une matrice $n \times n$. Le polynôme caractéristique de A est $c_A(t) = \det(A - tI_n)$.

THÉORÈME

Un nombre λ est valeur propre de A si et seulement si c'est une racine de $c_A(t)$, i.e. $\det(A - \lambda I) = 0$.

Sa multiplicité en tant que racine est appelée multiplicité algébrique.

DÉFINITION

Soit λ une valeur propre de A. La multiplicité géométrique de λ est dim $\mathrm{Ker}(A-\lambda I_n)$.

5.2.2 Similitude \approx

DÉFINITION

Deux matrices carrées A et B de taille $n \times n$ sont semblables s'il existe une matrice inversible P de taille $n \times n$ telle que

$$A = P^{-1}BP.$$

On note $A \approx B$.

THÉORÈME

Deux matrices semblables ont le même polynôme caractéristique.

Elles ont donc en particulier les mêmes valeurs propres.

La réciproque est fausse, puisque la matrice nulle n'est semblable qu'à elle-même, mais la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ a également t^2 comme polynôme caractéristique.

5.2.2 Exemple

pour B.

Attention! Deux matrices ayant les mêmes valeurs propres ne sont pas semblables en général. La matrice A est un bloc de Jordan:

$$A = \begin{pmatrix} 5 & 1 \\ 0 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \quad \text{matrix}$$

La seule valeur propre de A et de B est 5, de multiplicité algébrique 2 car $c_A(t)=(t-5)^2=c_B(t)$. Mais

En effet
$$P \cdot B \cdot P^{-1} = P \cdot (5I_2) \cdot P^{-1} = 5P \cdot I_2 \cdot P^{-1} = 5P \cdot P^{-1} = 5I_2 = B$$
. La multiplicité géométrique de 5 est 1 pour la matrice A_1 mais 2

5.2.3 Les relations \sim et \approx

- Deux matrices A et B de $M_{n\times n}(\mathbb{R})$ sont équivalentes selon les lignes et les colonnes s'il existe des opérations élémentaires sur les lignes et les colonnes qui transforment A en B.
- ② Or, effectuer des opérations sur les lignes de A revient à
- multiplier A à gauche par une matrice inversible P; ② effectuer une operation sur les volonnes de A = sur los lignes de AT
- et effectuer des opérations sur les colonnes de A revient à

DÉFINITION

Les matrices A et B sont équivalentes s'il existe deux matrices inversibles P et Q telles que PAQ = B. On note $A \sim B$.

On note
$$A \sim B$$
. Clairement $A \approx B \Rightarrow A \sim B \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

5.2.4 Calcul du polynôme caractéristique

Soit
$$A = \begin{pmatrix} 4 & 0 & -1 \\ -1 & 0 & 4 \\ 0 & 2 & 3 \end{pmatrix}$$
. Par manque d'inspiration on calcule $c_A(t)$ avec Sarrus

$$\begin{vmatrix} 4-t & 0 & -1 \\ -1 & -t & 4 \\ 0 & 2 & 3-t \end{vmatrix} = -t^3 + 7t^2 - 4t - 30$$

Ce n'est pas facile de voir que les racines de $c_A(t)$ sont 5, $1-\sqrt{7}$ et $1+\sqrt{7}...$

5.2.4 LE POLYNÔME CARACTÉRISTIQUE AVEC DES

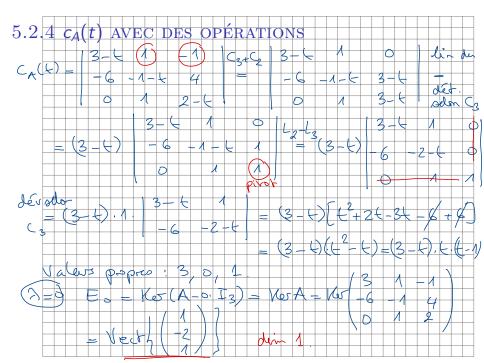
OPÉRATIONS ÉLÉMENTAIRES

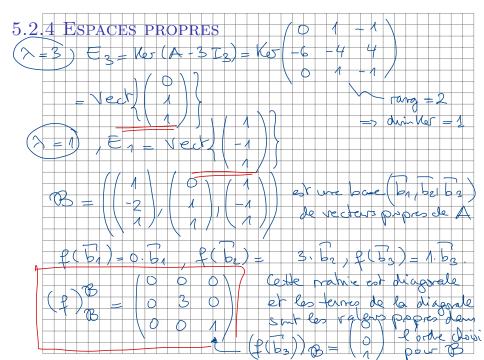
Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + y - z \\ -6x - y + 4z \\ y + 2z \end{pmatrix}$$

Alors
$$A = (f)_{\mathcal{C}an}^{\mathcal{C}an} = \begin{pmatrix} 3 & 1 & -1 \\ -6 & -1 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
. Calculons $c_A(t)$.

Pour collenter le polymone cetac	teristique de A m
effectue des opérations élevrento	its below les lignes
on les colonnes pour evouvo de r	retter + 1 en
endera.	





5.3.1 DIAGONALISATION

DÉFINITION

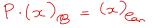
Une matrice est diagonalisable si elle est semblable à une matrice diagonale, i. e. il existe P inversible telle que $P^{-1}AP$ est diagonale.

THÉORÈME

Une matrice A de taille $n \times n$ est diagonalisable si et seulement si il existe une base \mathcal{B} de \mathbb{R}^n formée de vecteurs propres de A.

Preuve. On regarde A comme la matrice de $T: \mathbb{R}^n \to \mathbb{R}^n$ dans la base canonique : $T\overrightarrow{X} = A \cdot \overrightarrow{X}$ et $(T)_{\mathcal{C}an}^{\mathcal{C}an} = A$. Soit \mathcal{B} une autre base. Alors $(T)_{\mathcal{B}}^{\mathcal{B}}$ est diagonale $\iff T(\overrightarrow{b}_i) = \lambda_i \overrightarrow{b}_i \iff (T(\overrightarrow{b}_i))_{\mathcal{B}} = \lambda_i \overrightarrow{e}_i$. Dans la base \mathcal{B} les coordonnées de $T(\overrightarrow{b}_i)$ sont nulles sauf la i-ème.

5.3.2 Observations



- Les colonnes de la matrice de changement de base $P = (\mathrm{Id})_{\mathfrak{B}}^{\mathfrak{Can}}$ sont les vecteurs propres de la base \mathfrak{B} .
- ② $A = PDP^{-1}$ et D est diagonale, les valeurs propres $\lambda_1, \ldots, \lambda_n$ de A se trouvent dans la diagonale, dans l'ordre choisi pour construire la base.
- Le déterminant de A est le produit des valeurs propres (avec multiplicité).

En effet
$$\det A = \det(PDP^{-1}) = \det P \det D \det(P^{-1})$$
$$= \det D = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n$$