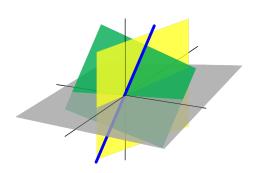
Algèbre Linéaire

Cours du 21 novembre

Jérôme Scherer

ttpollen 634255



5.3.1 Diagonalisation

DÉFINITION

Une matrice est diagonalisable si elle est semblable à une matrice diagonale, i. e. il existe P inversible telle que $P^{-1}AP$ est diagonale.

THÉORÈME

Une matrice A de taille $n \times n$ est diagonalisable si et seulement si il existe une base \mathcal{B} de \mathbb{R}^n formée de vecteurs propres de A.

Preuve. On regarde A comme la matrice de $T: \mathbb{R}^n \to \mathbb{R}^n$ dans la base canonique : $T\overrightarrow{x} = A \cdot \overrightarrow{x}$ et $(T)_{\mathcal{C}an}^{\mathcal{C}an} = A$.

Soit \mathcal{B} une autre base. Alors $(T)^{\mathcal{B}}_{\mathcal{B}}$ est diagonale \iff $T(\overrightarrow{b}_i) = \lambda_i \overrightarrow{b}_i$ \iff $(T(\overrightarrow{b}_i))_{\mathcal{B}} = \lambda_i \overrightarrow{e}_i$. Dans la base \mathcal{B} les coordonnées de $T(\overrightarrow{b}_i)$ sont nulles sauf la i-ème.

5.3.2 Observations

Soit A la matrice d'une application linéaire T exprimée dans la base canonique, $A=(T)^{\mathcal{C}an}_{\mathcal{C}an}$. Soit D la matrice de T exprimée dans une base \mathcal{B} , de sorte que $D=(T)^{\mathcal{B}}_{\mathcal{B}}$ est diagonale.

- Les colonnes de la matrice de changement de base $P = (\mathrm{Id})_{\mathfrak{B}}^{\mathfrak{S}an}$ sont les vecteurs propres de la base \mathfrak{B} .
- ② $A = PDP^{-1}$ et D est diagonale, les valeurs propres $\lambda_1, \ldots, \lambda_n$ de A se trouvent dans la diagonale, dans l'ordre choisi pour construire la base.
- ① Le déterminant de A est le produit des valeurs propres (avec multiplicité). En effet $\det A = \det(PDP^{-1}) = \det P \det D \det(P^{-1})$ $= \det D = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n$

5.3.2 Exemple

Soit $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ l'application linéaire définie par

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+d & b-c \\ c-b & a+d \end{pmatrix}$$

On commence par écrire la matrice de T dans la base canonique.

Cette matrice est de taille
$$4 \times 4!$$

Ca=(e11, e12, e21, e22)

5.3.2 Exemple, suite

On calcule le polynôme caractéristique

$$c_{A}(t) = \begin{vmatrix} 1-t & 0 & 0 & 1 \\ 0 & 1-t & -1 & 0 \\ 0 & -1 & 1-t & 0 \\ 1 & 0 & 0 & 1-t \end{vmatrix} \begin{vmatrix} 1-t & 0 & 0 & 1 \\ 0 & 1-t & -1 & 0 \\ 0 & -t & -t & 0 \\ 2-t & 0 & 0 & 2-t \end{vmatrix}$$

5.3.2 EXEMPLE, FIN

5.3.3 Premier critère de diagonalisation

THÉORÈME

Soit A une matrice de taille $n \times n$ ayant n valeurs propres distinctes. Alors A est diagonalisable.

1 (11) 5 **Preuve.** Pour chaque valeur propre on a un vecteur propre. Ces n

vecteurs sont libres par 5.1.5 et forment alors une base de \mathbb{R}^n .

PROPOSITION

Soient λ et μ deux valeurs propres distinctes de A. Alors $E_{\lambda} \cap E_{\mu} = \{\overrightarrow{0}\}.$

Preuve. Soit
$$\overrightarrow{x} \in E_{\lambda} \cap E_{\mu}$$
, alors $A\overrightarrow{x} = \lambda \overrightarrow{x}$, et aussi $A\overrightarrow{x} = \mu \overrightarrow{x}$. Comme $\mu \neq \lambda$, alors $\overrightarrow{x} = \overrightarrow{0}$.

REMARQUE

Les espaces propres E_{λ} et E_{μ} forment une somme directe $E_{\lambda} \oplus E_{\mu}$.

5.3.4 Multiplicités

PROPOSITION

Soit λ une valeur propre de A. Alors $1 \leq \dim E_{\lambda} \leq \operatorname{mult}(\lambda)$.

Preuve. E_{λ} contient un vecteur propre, non nul : $1 \leq \dim E_{\lambda}$.

5.3.4 Multiplicités

PROPOSITION

Soit λ une valeur propre de A. Alors $1 \leq \dim E_{\lambda} \leq \operatorname{mult}(\lambda)$.

Preuve. E_{λ} contient un vecteur propre, non nul : $1 \leq \dim E_{\lambda}$. Si $\overrightarrow{b}_1, \ldots \overrightarrow{b}_k$ est une base de E_{λ} , on peut la compléter en une base de \mathbb{R}^n .

5.3.4 Multiplicités

PROPOSITION

Soit λ une valeur propre de A. Alors $1 \leq \dim E_{\lambda} \leq \operatorname{mult}(\lambda)$.

Preuve. E_{λ} contient un vecteur propre, non nul : $1 \leq \dim E_{\lambda}$. Si $\overrightarrow{b}_1, \ldots \overrightarrow{b}_k$ est une base de E_{λ} , on peut la compléter en une base de \mathbb{R}^n . Dans cette base la matrice devient

$$\begin{pmatrix} \lambda & 0 & 0 & * & * \\ 0 & \ddots & 0 & * & * \\ 0 & 0 & \lambda & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Le polynôme caractéristique de cette matrice est le même que celui de A et commence par $(\lambda - t)^k$. Donc $k \leq \text{mult}(\lambda)$.

5.3.5 Critère de diagonalisation

Les deux propositions ci-dessus sont les clés de notre deuxième critère. Il faut qu'il y ait assez de valeurs propres réelles et assez de vecteurs propres.

THÉORÈME

Une matrice A est diagonalisable (sur \mathbb{R}) si et seulement si

• Le polynôme caractéristique est scindé : il se décompose en produit de facteurs $(\lambda - t)$ avec des $\lambda \in \mathbb{R}$.

5.3.5 Critère de diagonalisation

Les deux propositions ci-dessus sont les clés de notre deuxième critère. Il faut qu'il y ait assez de valeurs propres réelles et assez de vecteurs propres.

THÉORÈME

Une matrice A est diagonalisable (sur \mathbb{R}) si et seulement si

- Le polynôme caractéristique est scindé : il se décompose en produit de facteurs (λt) avec des $\lambda \in \mathbb{R}$.
- ② Pour tout λ , on a $\dim E_{\lambda} = \operatorname{mult}(\lambda)$.

Si *A* est diagonalisable on forme une base de vecteurs propres en réunissant les vecteurs de base de chaque espace propre.

5.3.5 EXEMPLE Pas a sich de valeur propres reelles diagoralisable est diagnalisas asset devalers Kes er de dim 1 I hom du cara Bret pas diagnalia a set de vecturs SUT de dem om

A.1 Les corps : Définition

Jusqu'ici nous avons développé des méthodes qui permettent de travailler avec des matrices à coefficients dans $\mathbb R$ et nous avons aussi constaté que cela fonctionne dans $\mathbb Q$. Il y a beaucoup d'autres corps de nombres! Vous connaissez bien sûr les nombres complexes, $\mathbb C$, et on pourrait refaire la théorie de la diagonalisation sur les complexes, nous en verrons d'autres.

DÉFINITION

Un corps K est un ensemble muni d'une addition + et d'une multiplication \cdot pour lesquelles les règles de calcul "usuelles" s'appliquent.

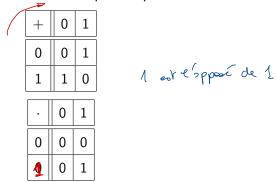
A.1 Les corps : Définition

Plus précisément on demande que

- (K,+) est un groupe abélien : il vérifie les axiomes d'associativité, de commutativité, il y a un élément neutre 0 et chaque nombre x admet un opposé -x.
- ② Le produit est associatif, commutatif, il existe un élément neutre 1 et chaque nombre $x \neq 0$ admet un inverse x^{-1} . $A \neq \emptyset$
- **1** La multiplication est distributive par rapport à l'addition : x(y+z) = xy + xz pour tous $x, yz \in K$.

A.2 Exemple : Le corps \mathbb{F}_2

Soit $\mathbb{F}_2 = \{0,1\}$. On définit somme et produit par les tables :



REMARQUE

La symétrie des tableaux montre la commutativité des opérations.

Pour + la ligne de 0 montre que c'est un élément neutre et pour \cdot c'est celle de 1 qui le prouve.

A.3. Application: Le code de Hamming

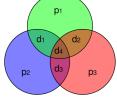
En 1946 l'ingénieur Hamming invente le premier code autocorrecteur pour ordinateurs à cartes perforées.

Son idée est d'ajouter à chaque mot de 4 bits $d_1d_2d_3d_4$ dans $(\mathbb{F}_2)^4$ un mot de 3 bits de contrôle formé par les sommes dans \mathbb{F}_2 :

- $0 d_1 + d_2 + d_4$
- $a_1 + d_3 + d_4$
- $d_2 + d_3 + d_4$

A.3. LE CODE DE HAMMING

On utilise 16 signes comme alphabet de base : 0000, 0001, ..., 1110, 1111. On visualise les bits de contrôle p_1, p_2 et p_3 comme suit :



Si une erreur se glisse dans la transmission, le code est capable de s'autocorriger. Si le mot $d_1d_2d_3d_4p_1p_2p_3=10001010$ est transmis, la parité de $d_1+d_2+d_4$ est correcte, mais les deux autres sont erronés. Ainsi il faut corriger le seul nombre commun aux bits de contrôle p_2 et p_3 qui n'apparaît pas dans p_1 .

A.4 LE CORPS DES NOMBRES COMPLEXES

On utilise la notation cartésienne pour introduire \mathbb{C} .

DÉFINITION

Le corps des nombres complexes $\mathbb{C}=\{a+bi|a,b\in\mathbb{R}\}$ est muni

- **1** de la somme (a + bi) + (c + di) = (a + c) + (b + d)i;
- 4 du produit (a + bI)(c + di) = (ac bd) + (ad + bc)i.

REMARQUE

L'addition est définie coefficient par coefficient, pas de surprise! La mutliplication est définie de la seule manière possible pour que

- lacktriangle elle étende le produit de $\mathbb R$;
- ② on ait $i^2 = -1$;
- 3 le produit soit distributif par rapport à la somme.

A.5 Les matrices de taille 2×2

- On peut additionner deux matrices de même taille et $(M_{2\times 2}(\mathbb{R}),+)$ forme un groupe commutatif.
- On peut aussi multiplier deux matrices 2 x 2 entre elles, ce produit est distributif par rapport à la somme, mais les matrices ne forment pas un corps!

PROBLÈMES

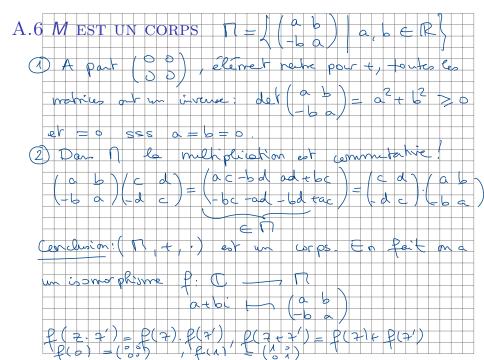
Le produit n'est pas commutatif, mais pire, il existe de nombreuses matrices qui ne sont pas inversibles. L'ensemble des matrices de taille 2×2 forme ce que l'on appelle un anneau (non commutatif).

Par contre, il existe des sous-ensembles de $M_{2\times 2}(\mathbb{R})$ qui sont des corps!

A.6 Sous-anneaux des matrices de taille 2×2

- Soit S = {A ∈ M_{2×2}(ℝ) | A est scalaire }. Alors S forme un corps pour la somme et le produit de matrices. En fait l'application f: ℝ → S définie par f(a) = al₂ est un isomorphisme qui identifie S avec le corps des nombres réels.
- ② Soit $M = \{A \in M_{2 \times 2}(\mathbb{R}) \mid a_{11} = a_{22} \text{ et } a_{12} = -a_{21}\}$. Alors M forme un corps.

Puisque la somme est associative et commutative et que le produit est associatif et distributif pour toutes les matrices, on vérifie seulement la commutativité du produit dans M et l'existence d'un inverse pour tout élément non nul de M.



A.7 ARITHMÉTIQUE MODULAIRE

Comme pour $\mathbb{F}_2=\{0,1\}$ on peut considérer l'ensemble des nombres entiers $\{0,1,2,\ldots,n-1\}.$

On regarde ces nombres comme tous les restes possibles de la division par n, ce qui nous permet de définir une somme et un produit en calculant dans \mathbb{Z} , mais en ne gardant que le reste de la division. Ainsi

- **1** Dans $\{0, 1, 2\}$ on calcule 2 + 2 = 4
- ② Dans $\{0, 1, 2\}$ on calcule $2^3 =$
- **3** Dans $\{0, 1, 2, 3, 4\}$ on calcule $3 \cdot 4 =$
- **1** Dans $\{0, 1, 2, 3, 4\}$ on calcule 1 4 =
- **5** Dans $\{0, 1, 2, 3, \dots, 10, 11\}$ on calcule $10 \cdot 6 =$