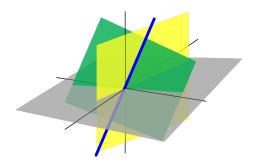
ALGÈBRE LINÉAIRE COURS DU 19 DÉCEMBRE

Jérôme Scherer



7.4.1 Décomposition en valeurs singulières

Soit A une matrice $m \times n$ et $T : \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire associée. Alors T transforme la sphère unité de \mathbb{R}^n

$$S = \{ \overrightarrow{x} \in \mathbb{R}^n \mid ||\overrightarrow{x}|| = 1 \}$$

en un ellipsoïde de \mathbb{R}^m .

REMARQUE

L'étirement est maximal dans la direction de l'espace propre correspondant à la plus grande valeur propre de la matrice symétrique $B = A^T A$.

LEMME

Soit A une matrice $m \times n$ et $B = A^T A$. Les valeurs propres de B sont positives.

7.4.4 Valeurs singulières

On ordonne les valeurs propres de $B = A^T A$ de sorte que

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$$

DÉFINITION

Les valeurs singulières de A sont les $\sigma_i = \sqrt{\lambda_i}$.

Remarque. On a $\sigma_i = ||Av_i||$ où v_i est un vecteur propre unitaire de B pour la valeur propre λ_i .

7.4.5 L'IMAGE DE A

Soit A une matrice de taille $m \times n$, (v_1, \ldots, v_n) une base orthonormée de vecteurs propres unitaires de $B = A^T A$ pour les valeurs propres $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$.

THÉORÈME

Si A admet exactement r valeurs singulières non nulles, alors (Av_1, \ldots, Av_r) est une base orthogonale de l'image de A.

Preuve.
$$(Av_i) \cdot (Av_j) = v_i^T A^T Av_j = v_i^T \lambda_j v_j = 0$$
 pour $i \neq j$.

En particulier $||Av_i||^2 = \lambda_i ||v_i||^2 > 0$ et les vecteurs Av_1, \dots, Av_r sont orthogonaux, donc linéairement indépendants.

Ils engendrent
$$\text{Im} A$$
 car $Av_{r+1} = \cdots = Av_n = 0$.

7.4.6 Décomposition en valeurs singulières

Une décomposition de A en valeurs singulières (SVD) est une factorisation $A = U\Sigma V^T$ telle que

- U est orthogonale $m \times m$;
- \circ *V* est orthogonale $n \times n$;

Les lignes de U et de V sont appelés les vecteurs singuliers à gauche et à droite de A.

7.4.6 Existence de la SVD

- On choisit $V = (\overrightarrow{v}_1 \cdots \overrightarrow{v}_n)$ où les \overrightarrow{v}_i forment une base orthonormée de vecteurs propres de $B = A^T A$, classés dans l'ordre décroissant des valeurs propres λ_i .
- On pose $\overrightarrow{u}_i = \frac{A\overrightarrow{v}_i}{\|A\overrightarrow{v}_i\|} = \frac{1}{\sigma_i}A\overrightarrow{v}_i$ pour $1 \le i \le r$.
- **③** On complète en une base orthonormée $(\overrightarrow{u}_1, \dots, \overrightarrow{u}_r, \overrightarrow{u}_{r+1}, \dots, \overrightarrow{u}_m)$ de \mathbb{R}^m et on pose $U = (\overrightarrow{u}_1 \cdots \overrightarrow{u}_m)$.
- On calcule $U\Sigma = (\sigma_1 \overrightarrow{u}_1, \dots, \sigma_r \overrightarrow{u}_r, \overrightarrow{0}, \dots, \overrightarrow{0}) = A(\overrightarrow{v}_1 \cdots \overrightarrow{v}_n) = AV.$

7.4.3 Exemple

Exemple. Soit
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
. L'image de la sphère unité de

 \mathbb{R}^3 est une ellipse dans \mathbb{R}^2 .

$$B = A^{T}A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} = \begin{pmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{pmatrix}$$

$$c_B(t) = -t(t-25)(t-9)$$

$$E_{25} = \operatorname{Vect} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \operatorname{Vect} \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{pmatrix}$$

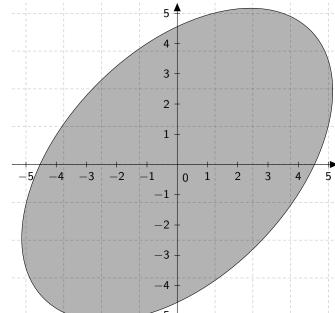
7.4.3 Calcul, suite

$$\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 5\sqrt{2}/2 \\ 5\sqrt{2}/2 \end{pmatrix}$$

Ce vecteur est l'image par T d'un vecteur unitaire (de la sphère unité). Il est de longueur maximale (5) et correspond au grand axe de l'ellipse ci-dessous.

$$0 \sigma_1 = 5, \ \sigma_2 = 3, \ \sigma_3 = 0.$$

7.4.4 Grand axe et petit axe



7.4.6 Exemple, fin

Si
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
 et $B = A^T A$. Alors $E_0 = \text{Vect} \left\{ \begin{pmatrix} 2/3 \\ -2/3 \\ -1/3 \end{pmatrix} \right\}$.

Donc
$$V = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/6 & 2/3 \\ \sqrt{2}/2 & -\sqrt{2}/6 & -2/3 \\ 0 & 2\sqrt{2}/3 & -1/3 \end{pmatrix}$$

On connaît déjà
$$U = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix}$$
 et enfin $\Sigma = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$. On a bien $U\Sigma V^T = A$

et enfin
$$\Sigma = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$
. On a bien $U\Sigma V^T =$

7.4.7 Commentaires

- Fonctionne pour des matrices non diagonalisables, même rectangulaires!
- Utile pour des applications numériques. Les matrices U et V étant orthogonales, l'estimation de l'erreur ou de l'imprécision est dans Σ uniquement.
- Utile en statistiques (PCA).
- Utile pour la compression de données

7.4.7 Compression des données

Exemple trouvé chez http://andrew.gibiansky.com/blog/ Une photo (d'un tigre) est codée par une matrice A de rang 500.

Chacune des images suivantes est produite en remplaçant la matrice

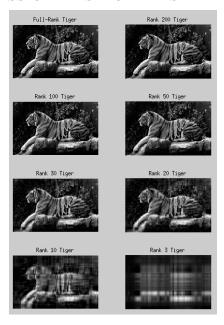
$$A = U\Sigma V^T$$

par la meilleure approximation possible de rang m, c'est-à-dire

$$U\Sigma_m V^T$$

où Σ_m est la matrice Σ_m est obtenue en ne gardant que les m premières valeurs singulières (les plus grandes) :

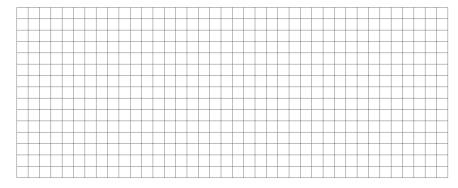
7.4.7 Compression des données



A.21 CALCULS DANS \mathbb{F}_{25}

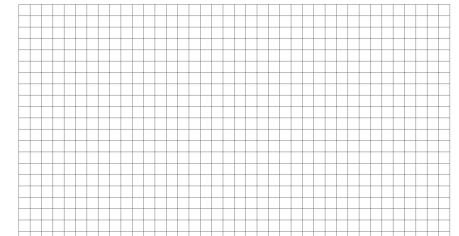
Soit \mathbb{F}_5 le corps à cinq éléments et $\mathbb{F}_5[t]$ l'anneau des polynômes de degré ≤ 2 à coefficients dans \mathbb{F}_5 . Soit encore $p(t)=t^2+t+1$ et A la matrice $\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \in M_{2 \times 2}(\mathbb{F}_5)$.

(1) (1 point) Montrer que p(t) est irréductible dans $\mathbb{F}_{5}[t]$.



A.21 CALCULS DANS \mathbb{F}_{25} , SUITE

(2) (2 points) Soit $\mathbb{F}_{25} = \mathbb{F}_5[t]/(p(t))$, le corps à 25 éléments des restes de la division polynomiale par p(t). Décomposer p(t) en produit de polynômes irréductibles dans $\mathbb{F}_{25}[t]$.

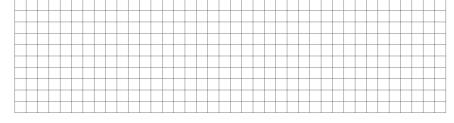


A.21 CALCULS DANS \mathbb{F}_{25} , SUITE

(3) (1 point) A n'est pas diagonalisable dans $M_{2\times 2}(\mathbb{F}_5)$.



(4) (4 points) Montrer que A est diagonalisable dans $M_{2\times 2}(\mathbb{F}_{25})$.



A.21 CALCULS DANS \mathbb{F}_{25} , FIN

Programme de cette année (liste non exhaustive!)

A. Méthode de Gauss : échelonner

- Déterminer si un système d'équations est compatible.
- Déterminer si un système d'équations possède aucune, une ou une infinité de solutions.
- Déterminer la dimension de la solution générale (nombre de paramètres).
- Calculer le rang d'une application linéaire.
- Calculer la dimension du noyau d'une application linéaire.

MÉTHODE DE GAUSS : RÉDUIRE

- Calculer la solution explicite d'un système d'équations.
- Calculer explicitement le noyau d'une matrice, en donner une base.
- Calculer explicitement une base de l'image d'une application linéaire.
- Inverser une matrice.

OPÉRATIONS SUR LES LIGNES/COLONNES

- Calculer un déterminant (linéarité comme fonction d'une ligne ou une colonne).
- Calculer une aire ou un volume.
- Factorisation LU.
- Extraire une base d'une famille de vecteurs.
- Vérifier qu'une famille de vecteurs est libre.
- O Compléter en une base une famille de vecteurs libres.
- Vérifier qu'une famille de vecteurs est génératrice.

MATRICE D'UNE APPLICATION LINÉAIRE

Soit $T: V \rightarrow W$.

- Choisir une base \mathcal{B} de V et une base \mathcal{C} de W.
- Calculer les images des vecteurs de B en coordonnées dans la base C.
- \odot Ce sont les colonnes de la matrice de T.
- **1** Exemple: matrice de changement de base (pour T = Id).
- Théorème du rang.
- Étude de l'injectivité et de la surjectivité de T

ESPACES VECTORIELS

- Reconnaître des sous-espaces vectoriels de \mathbb{R}^n , \mathbb{P}_n , $M_{m \times n}(\mathbb{R})$.
- Travailler avec les sous-espaces : noyau, espace-lignes, espace-colonnes
- Calcul de la dimension d'un sous-espace

DIAGONALISATION

Soit A une matrice carrée.

- Calculer le polynôme caractéristique de la matrice A.
- Calculer les valeurs propres (réelles ou complexes) et les espaces propres.
- $oldsymbol{0}$ Trouver si possible une base $oldsymbol{\mathcal{B}}$ de vecteurs propres.
- **1** Ecrire la matrice de changement de base $P = (Id)^{\mathcal{C}an}_{\mathcal{B}}$.
- Calculer la matrice de changement de base inverse.
- **1** $D = P^{-1}AP$.

DIAGONALISATION, VARIANTES

- Calcul des puissances d'une matrice.
- ② Au lieu de commencer avec une matrice A, construire la matrice de $T:W\to W$ pour le choix d'une base $\mathcal B$ de W.

GRAM-SCHMIDT

- Produit scalaire standard, norme et orthogonalité.
- Formules pour la projection orthogonale (pour une base orthogonale ou orthonormée!)
- Formules pour Gram-Schmidt.
- Méthode des moindres carrées.
- Factorisation QR
- O Droite de régression linéaire

ORTHODIAGONALISATION

- Matrices orthogonales.
- Matrices symétriques et formes bilinéaires.
- Oritère d'orthodiagonalisation.
- Théorème spectral

Sujets propres à ce cours

- Formules de Cramer
- Produits scalaires non standards
- Oécomposition en valeurs singulières (SVD)
- Interprétation du Théorème spectral
- lacktriangledown Corps finis : le corps \mathbb{F}_p des entiers modulo p
- **①** Corps finis : construction de \mathbb{F}_{p^2} et \mathbb{F}_{p^3}
- lacktriangle Corps finis : calcul de produit et d'inverse dans \mathbb{F}_{p^2} et \mathbb{F}_{p^3}
- lacktriangle Corps finis : algèbre linéaire sur \mathbb{F}_p et \mathbb{F}_{p^2}