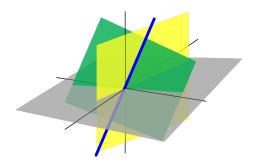
ALGÈBRE LINÉAIRE COURS DU 12 DÉCEMBRE

Jérôme Scherer



7.1.3 Théorème spectral

Théorème spectral

Soit A une matrice symétrique. Alors

- A admet *n* valeurs propres réelles (avec multiplicité).
- 2 Pour toute valeur propre λ on a $\operatorname{mult}(\lambda) = \dim E_{\lambda}$.
- **3** Si $\lambda \neq \mu$, alors $E_{\lambda} \perp E_{\mu}$.
- A est orthodiagonalisable.

ATTENTION!

Si λ est une valeur propre de multiplicité ≥ 2 , alors la base de vecteurs propres de E_{λ} fournie par la méthode de Gauss n'est pas orthogonale en général, il faut Gram-Schmidter pour obtenir une base orthonormée de vecteurs propres.

7.1.4 EXEMPLE

7.1.4 EXEMPLE, FIN

7.1.5 MÉTHODE.

- Vérifier que *A* est symétrique.
- ② Calculer $c_A(t)$ et en extraire les racines (valeurs propres).
- Calculer les espaces propres. Pour chacun, le procédé de Gram-Schmidt donne une base orthonormée.
- **1** En assemblant les bases des espaces propres on obtient une base orthonormée \mathcal{U} de \mathbb{R}^n .
- La matrice P dont les colonnes sont les vecteurs \overrightarrow{u}_i de \mathcal{U} est orthogonale et P^TAP est diagonale.

AVANTAGE

La matrice de changement de base inverse est P^T .

7.1.6 Matrice de Projection

Soit \overrightarrow{u} un vecteur unitaire et $A = \overrightarrow{u} \overrightarrow{u}^T$. Alors

$$\overrightarrow{AX} = \overrightarrow{u}(\overrightarrow{u}^T\overrightarrow{X}) = (\overrightarrow{u} \cdot \overrightarrow{X})\overrightarrow{u}$$

- \overrightarrow{u} est un vecteur propre de A pour la valeur propre 1 car $(\overrightarrow{u} \cdot \overrightarrow{u}) \overrightarrow{u} = \overrightarrow{u}$.
- 2 Posons $W = \text{Vect}(\overrightarrow{u})$. Alors W^{\perp} est le noyau de A.
- 3 Ainsi $E_1 = W$ et $E_0 = W^{\perp}$.

PROPOSITION

La matrice $A = \overrightarrow{u} \overrightarrow{u}^T$ est la matrice de la projection orthogonale sur $W = \text{Vect}(\overrightarrow{u})$. On a $A\overrightarrow{x} = \text{proj}_{\overrightarrow{u}}\overrightarrow{x}$.

C'est un cas particulier que nous avons vu pour UU^T , matrice de projection orthogonale quand les colonnes de U sont orthonormées.

7.1.6 EXEMPLES

7.1.7 DÉCOMPOSITION SPECTRALE

DÉFINITION

Soit A symétrique, U orthogonale et $U^TAU = D$ diagonale.

L'ensemble des valeurs propres de A est appelé spectre de A.

$$A = UDU^{T} = (\overrightarrow{u}_{1} \overrightarrow{u}_{2} \dots \overrightarrow{u}_{n}) \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix} \begin{pmatrix} \overrightarrow{u}_{1}^{T} \\ \overrightarrow{u}_{2}^{T} \\ \vdots \\ \overrightarrow{u}_{n}^{T} \end{pmatrix}$$

$$= (\lambda_{1} \overrightarrow{u}_{1} \dots \lambda_{n} \overrightarrow{u}_{n}) \begin{pmatrix} \overrightarrow{u}_{1}^{T} \\ \vdots \\ \overrightarrow{u}_{n}^{T} \end{pmatrix} = \lambda_{1} \overrightarrow{u}_{1} \overrightarrow{u}_{1}^{T} + \dots + \lambda_{n} \overrightarrow{u}_{n} \overrightarrow{u}_{n}^{T}$$

$$A = \lambda_1 \overrightarrow{u}_1 \overrightarrow{u}_1^T + \dots + \lambda_n \overrightarrow{u}_n \overrightarrow{u}_n^T$$
 est la décomposition spectrale.

7.1.7 Interprétation de la déc. spectrale

Si A est une matrice symétrique, alors

$$A = \lambda_1 \overrightarrow{u}_1 \overrightarrow{u}_1^T + \dots + \lambda_n \overrightarrow{u}_n \overrightarrow{u}_n^T$$

est sa décomposition spectrale.

Ainsi A se décompose en une combinaison linéaire de projections orthogonales!

7.1.7 Exemple de déc. spectrale

Soit $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ la matrice symétrique que nous avons orthodiagonalisée mardi. Nous avons trouvé une base orthonormée de vecteurs propres (pour les valeurs propres -1 et 3):

$$\mathcal{U} = (\overrightarrow{u}_1, \overrightarrow{u}_2) = \left(\begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \right)$$

La décomposition spectrale de A est donc

$$A = -1 \cdot \overrightarrow{u}_1 \overrightarrow{u}_1^T + 3 \cdot \overrightarrow{u}_2 \overrightarrow{u}_2^T$$

7.1.7 EXEMPLE, SUITE

A.12 La caractéristique d'un corps fini

Soit K un corps fini (ayant un nombre fini d'éléments). Considérons l'ensemble de tous les multiples entiers de 1_K dans K, c'est-à-dire les éléments de la forme $n \cdot 1_K = 1_K + \dots + 1_K$. Comme K est fini, $\{n \cdot 1_K \mid n \in \mathbb{Z}\}$ aussi est fini. Autrement dit, il existe des entiers n tels que $n \cdot 1_K = 0$ (si $m \cdot 1_K = m' \cdot 1_K$, alors $(m-m') \cdot 1_K = 0_K$).

DÉFINITION

Le plus petit entier non nul n tel que $n \cdot 1_K = 0$ s'appelle la caractéristique de K et on le note $\operatorname{car} K$.

PROPOSITION

La caractéristique d'un corps fini K est un nombre premier.

A.12 EXEMPLES ET PREUVE

A.12 PREUVE, SUITE ET FIN

A.13 La cardinalité d'un corps fini

Soit $p = \operatorname{car} K$. Alors le corps \mathbb{F}_p agit sur K par multiplication.

DÉFINITION

Soit $k \in \mathbb{F}_p$ et $x \in K$. On pose $k \cdot x = (k \cdot 1_K) \cdot x$.

Cette action est bien définie puisque $p \cdot 1_K = 0$. Les propriétés de l'action sont toutes conséquence du fait que K est un corps.

PROPOSITION

Soit K un corps fini et $p = \operatorname{car} K$. Alors K est un \mathbb{F}_p -espace vectoriel.

THÉORÈME

Soit K un corps fini et $p = \operatorname{car} K$. Alors il existe n tel que K a p^n éléments. On appelle ce nombre la cardinalité de K.

A.13 PREUVE

A.14 Construction de corps finis

La construction de \mathbb{F}_4 n'est pas un cas isolé, la méthode générale fonctionne de la même manière. Soit p un nombre premier.

- Trouver un polynôme p(t) unitaire irréductible de degré n dans F_p[t].
- Considérer l'ensemble K de tous les restes de division par p(t). Il y en a p^n .
- **1** Définir la somme dans K comme dans $\mathbb{F}_p[t]$.
- **1** Définir le produit dans K par celui de $\mathbb{F}_p[t]$, modulo p(t).
- **1** Alors K est un corps de cardinalité p^n .

A.15 Exemple : Le corps \mathbb{F}_{49}

Nous cherchons un polynôme irréductible de degré 2.

PROPOSITION

Soit K un corps et $p(t) = t^2 - a$. Si a n'est pas un carré, alors p(t) est irréductible.

Preuve. En effet p(t) est irréductible si et seulement si il n'a pas de racine (car il est de degré 2), si et seulement si $p(x) \neq 0$ pour tout $x \in K$.

Or,
$$p(x) = x^2 - a = 0$$
 si et seulement si $a = x^2$ est un carré.

REMARQUE

Pour trouver un polynôme irréductible de degré 2 à coefficients dans \mathbb{F}_7 , nous cherchons à comprendre quels éléments sont des carrés.

A.15 LES CARRÉS DE F7

A.15 CALCULS DANS F49

A.15 LA NOTION DE CLASSE

Nous avons construits \mathbb{F}_p comme le corps des restes de la division euclidienne des entiers \mathbb{Z} par p, un nombre premier. Chaque entier dont le reste de la division vaut 2 représente alors dans \mathbb{Z} le même élément dans \mathbb{F}_p :

$$\dots$$
, 2 – 2 p , 2 – p , 2, 2 + p , 2 + 2 p , \dots

On dit que le reste 2 est la classe de tous ces nombres, on écrit souvent $[2] \in \mathbb{F}_p$ pour distinguer cet élément du nombre entier 2.

Dans \mathbb{F}_{49} , l'élément α est la classe [t]. C'est un élément qui est représenté dans $\mathbb{F}_7[t]$ par tous les polynômes dont le reste de la division par t^2-3 vaut t, par exemple

$$t^2 + t + 3, t^3 + 5t, \dots$$

A.16 Quelques faits sans preuve

PROPOSITION

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un polynôme irréductible de degré n dans $\mathbb{F}_p[t]$.

THÉORÈME

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un corps fini de cardinalité p^n .

REMARQUE

En fait un tel corps est unique à isomorphisme près, ce qui signifie que deux choix différents de polynômes p(t) et q(t) donnent des corps $\mathbb{F}_p[t]/(p(t))$ et $\mathbb{F}_p[t]/(q(t))$ qui sont isomorphes.

Il existe donc un isomorphisme $f: \mathbb{F}_p[t]/(p(t)) \to \mathbb{F}_p[t]/(q(t))$.

A.17 DEUX CORPS À HUIT ÉLÉMENTS?

On cherche dans $\mathbb{F}_2[t]$ un polynôme de degré 3 irréductible. Il y en a huit.

- **1** t^3 , $t^3 + t$, $t^3 + t^2$ et $t^3 + t^2 + t$ s'annulent en 0 : éliminés!
- ② $t^3 + 1$, $t^3 + t^2 + t + 1$ s'annulent en 1 : éliminés!

Proposition

Les polynômes $p(t) = t^3 + t + 1$ et $q(t) = t^3 + t^2 + 1$ sont les seuls polynômes de degré 3 irréductibles de $\mathbb{F}_2[t]$.

On peut donc construire $\mathbb{F}_8 = \mathbb{F}_2[t]/(p(t))$ et $\mathbb{F}_8' = \mathbb{F}_2[t]/(q(t))$. Appelons α la classe de t dans \mathbb{F}_8 et β celle de t dans \mathbb{F}_8' .

A.18 REMARQUES

A.18 Un seul corps à huit éléments

- **1** Dans \mathbb{F}_8 , on a $t^3 + t + 1 = 0$, autrement dit $\alpha^3 = \alpha + 1$.
- ② Dans \mathbb{F}_8' , on a $t^3 + t^2 + 1 = 0$, autrement dit $\beta^3 = \beta^2 + 1$.

Remarque

Les éléments α et β se comportent différemment sous la multiplication !

Calculons les puisances de α et celles de β pour comparer la structure multiplicative de ces deux corps. Pour construire un isomorphisme $f\colon \mathbb{F}_8 \to \mathbb{F}_8'$, nous devons envoyer zéro sur zéro, et un sur un, mais où donc envoyer α ?

7.2.0 Rappel: Terminologie

- Equivalence. A ~ B si on peut passer de A à B par des opérations élémentaires sur les lignes. Utilité : Résolution de systèmes, calcul du rang.
- **3 Similitude.** $A \approx B$ si on peut passer de A à B par un changement de base $A = SBS^{-1}$. Utilité : Représentation d'une application linéaire, diagonalisation.
- Congruence. A ≈ B si on peut passer de A à B par un changement de base orthonormée A = PBP^T. Utilité : Représentation d'un produit scalaire, pour les matrices symétriques uniquement!

7.2.1 Matrices congruentes

Si A est la matrice d'un produit scalaire de V, exprimé dans la base orthonormée $C = (e_1, \ldots, e_n)$, alors

$$\langle u, v \rangle = (u)_{\mathcal{C}}^T A(v)_{\mathcal{C}}$$

On calcule par exemple $\overrightarrow{e}_i^T A \overrightarrow{e}_j = \overrightarrow{e}_i^T \overrightarrow{a}_j = a_{ij}$

et comme $\langle e_i, e_j \rangle = a_{ij}$ doit coïncider avec $\langle e_j, e_i \rangle = a_{ji}$, la matrice A est symétrique.

PROPOSITION

Deux matrices symétriques A et B représentent le même produit scalaire si elles sont congruentes.

7.2.2 Preuve

Soit P une matrice orthogonale. On considère P comme une matrice de changement de base $(Id)_{\mathcal{B}}^{\mathcal{C}an}$ dont les colonnes sont les vecteurs d'une base orthonormée exprimés en coordonnées dans la base canonique.

On pose
$$\overrightarrow{y} = P^{-1}\overrightarrow{x} = P^{T}\overrightarrow{x} = (Id)_{Can}^{B}\overrightarrow{x}$$

Si \overrightarrow{x} est un vecteur de \mathbb{R}^n exprimé en coordonnées dans la base canonique, \overrightarrow{y} est $(\overrightarrow{x})_{\mathcal{B}}$, ce même vecteur exprimé dans la nouvelle base.

Nous avons $\langle \overrightarrow{x}, \overrightarrow{x'} \rangle = \overrightarrow{x}^T A \overrightarrow{x'}$ et nous devons démontrer que la matrice congruente $B = P^T A P$ représente le même produit scalaire, mais pour des vecteurs exprimés dans la base orthonormée \mathcal{B} .

7.2.3 Encore le Théorème spectral

On travaille avec

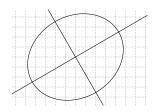
- **①** un espace vectoriel V de dimension finie n et une base \mathcal{B} ;
- un produit scalaire représenté par une matrice symétrique A par rapport à la base B.

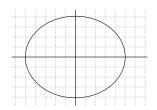
THÉORÈME SPECTRAL

Il existe un changement de base orthonormée qui permet de représenter ce produit scalaire par une matrice diagonale.

7.2.4 Exemple : ellipse

Que représente l'équation $\frac{9}{2}x_1^2 - \sqrt{3}x_1x_2 + \frac{11}{2}x_2^2 = 100$? C'est une courbe de niveau de la fonction de deux variables $Q(x_1, x_2)$.





Via une rotation de 30° on amène les axes de l'ellipse en position standard, $4y_1^2 + 6y_2^2 = 100$.

On peut calculer la longueur des axes de l'ellipse : Si $y_2 = 0$, alors $4y_1^2 = 100$, i.e. $y_1 = \pm 5$. Le grand axe mesure 10.

Si $y_1 = 0$, $y_2 = \pm \sqrt{50/3}$, la longueur du petit axe vaut ≈ 8.2 .