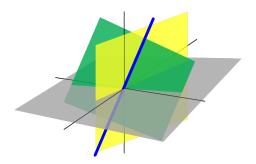
Algèbre Linéaire

Cours du 3 octobre

Jérôme Scherer



2.2.4 Propriétés de l'inverse, rappel

Propriétés

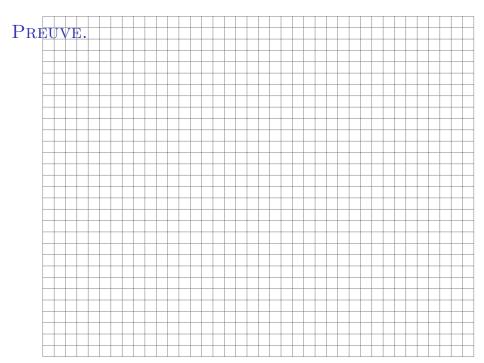
Soient A et B des matrices carrées $n \times n$ inversibles et $\lambda \in \mathbb{R}^*$.

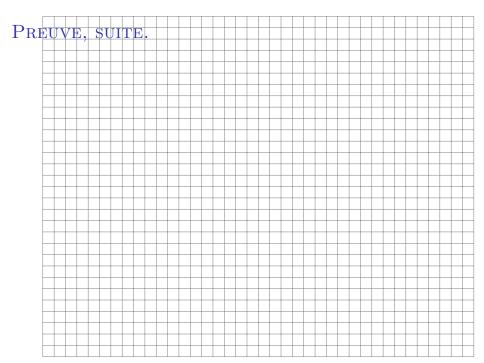
- $(A^{-1})^{-1} = A;$
- $(A^T)^{-1} = (A^{-1})^T$;
- **a** $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$

Attention! Pour que ces propriétés soient vraies, il faut que les matrices soient carrées. En effet

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} 1 \\ 2 \end{array}\right) = \left(\begin{array}{c} 3 \end{array}\right)$$

est inversible, mais les matrices de départ ne le sont pas.





2.2.5 L'inverse d'une matrice 2×2

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Alors

- A est inversible si et seulement si :
- A représente une application linéaire bijective, si et seulement si :
- les colonnes de A ne sont pas proportionnelles, si et seulement si :
- $d \begin{pmatrix} a \\ c \end{pmatrix} \neq c \begin{pmatrix} b \\ d \end{pmatrix}$, si et seulement si :
- $ad \neq bc$.

2.2.5 L'inverse d'une matrice 2×2

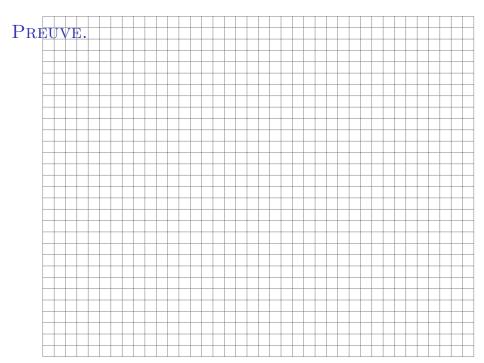
DÉFINITION

Le déterminant de la matrice A est le nombre réel det A = ad - bc.

Nous avons vu qu'une matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si et seulement son déterminant ad - bc est différent de zéro.

Lorsque det $A \neq 0$, l'inverse est donné par

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$



EXEMPLES.

2.2.6 Matrices élémentaires de type I

DÉFINITION

Soient $1 \le i, j \le n$. La matrice élémentaire de type I $E_{ij}(\lambda)$ pour $i \ne j$ et $\lambda \in \mathbb{R}$ est la matrice carrée dont les coefficients diagonaux sont égaux à 1, le coefficient (i,j) vaut λ et tous les autres coefficients sont nuls.

Sans le savoir nous n'avons cessé de faire des multiplications matricielles dès le début du cours!

PROPOSITION

Multiplier une matrice A à gauche par $E_{ij}(\lambda)$ correspond à ajouter λ fois la j-ème ligne à la i-ème.

EXEMPLE.

2.2.6 Matrices élémentaires de type II

DÉFINITION

La matrice élémentaire de type II E_{ij} pour $i \neq j$ est la matrice carrée I_n dont on a échangé les lignes i et j.

Sans le savoir nous n'avons cessé de faire des multiplications matricielles dès le début du cours!

PROPOSITION

Multiplier une matrice A à gauche par E_{ij} correspond à échanger les j-ème et i-ème lignes.

EXEMPLE.

2.2.6 Matrices élémentaires de type III

DÉFINITION

La matrice élémentaire de type III $E_i(\lambda)$ pour $1 \le i \le n$ et $\lambda \in \mathbb{R}$ est la matrice diagonale dont les coefficients diagonaux sont égaux à 1, sauf le i-ème qui vaut λ .

Sans le savoir nous n'avons cessé de faire des multiplications matricielles dès le début du cours!

PROPOSITION

Multiplier une matrice A à gauche par $E_i(\lambda)$ correspond à multiplier par λ la i-ème ligne.

EXEMPLE.

2.2.6 Matrices et opérations élémentaires

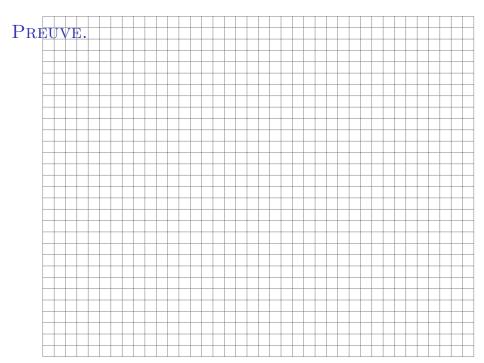
Nous avons obtenu une interprétation entièrement matricielle des trois types d'opérations introduites au début du chapitre 1.

OBSERVATION

Chaque matrice élémentaire est construite en effectuant l'opération élémentaire correspondante sur la matrice I_n .

Théorème

- Une matrice carrée A de taille $n \times n$ est inversible si et seulement si elle est équivalente selon les lignes à la matrice I_n .
- ② Si A est inversible la suite d'opérations élémentaires qui transforme A en I_n transforme I_n en A^{-1} .



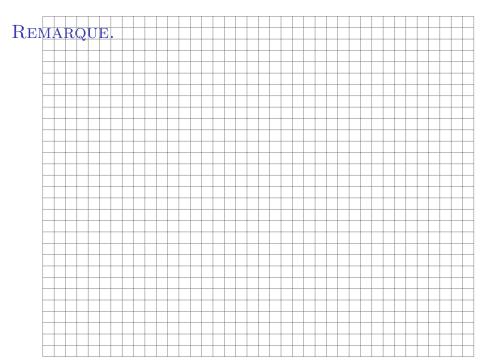
2.2.7 Exemple

Pour calculer l'inverse de la matrice
$$A=\left(\begin{array}{ccc} 1 & 1 & 2 \\ -1 & 1 & -2 \\ 2 & 1 & 2 \end{array}\right)$$
 on

échelonne et réduit A en effectuant simultanément les mêmes opérations sur I_3 . On place donc côte à côte les matrices A et I_3 et on commence :

$$\left(\begin{array}{ccc|cccc}
1 & 1 & 2 & 1 & 0 & 0 \\
-1 & 1 & -2 & 0 & 1 & 0 \\
2 & 1 & 2 & 0 & 0 & 1
\end{array}\right)$$

SUITE.



2.3.1 Critères d'inversibilité, I

Propriétés équivalentes

- A est inversible.
- \bullet A est équivalente selon les lignes à I_n .
- A admet *n* positions de pivot.
- Les colonnes de A sont linéairement indépendantes.
- L'application linéaire $\overrightarrow{x} \mapsto A \overrightarrow{x}$ est injective.

Nous avons déjà compris que les propriétés (A), (B) et (C) sont équivalentes.

Les propriétés (D), (E) et (F) aussi sont équivalentes (voir le critère d'injectivité).

2.3.1 Critères d'inversibilité, II

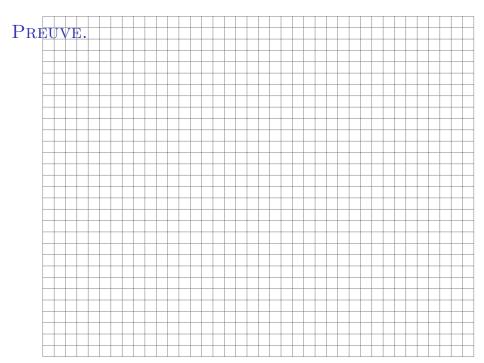
Propriétés équivalentes

- (G) $\overrightarrow{Ax} = \overrightarrow{b}$ a au moins une solution.
- (H) Les colonnes de A engendrent \mathbb{R}^n .
- (I) L'application linéaire $\overrightarrow{x} \mapsto A \overrightarrow{x}$ est surjective.
- (J) Il existe une matrice carrée C telle que $CA = I_n$.
- (K) Il existe une matrice carrée D telle que $AD = I_n$.
- (L) La matrice transposée A^T est inversible.

Les propriétés (G), (H) et (I) aussi sont équivalentes (voir le critère de surjectivité).

Nous allons démontrer que

$$(L) \Leftrightarrow (A) \Rightarrow (J) \Rightarrow (D) \Rightarrow (C) \Rightarrow (K) \Rightarrow (G) \Rightarrow (B)$$



2.3.2 Application inverse

Soit $T: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. Soit A la matrice de taille $n \times n$ telle que $T(\overrightarrow{x}) = A \cdot \overrightarrow{x}$ pour tout vecteur $\overrightarrow{x} \in \mathbb{R}^n$.

DÉFINITION

On dit que T admet une application inverse ou réciproque $S: \mathbb{R}^n \to \mathbb{R}^n$ si $T \circ S = Id_{\mathbb{R}^n} = S \circ T$.

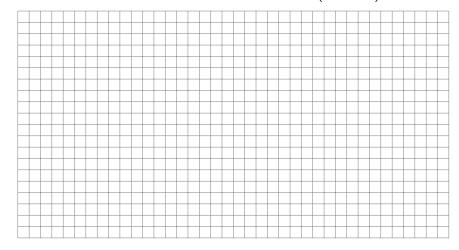
THÉORÈME

L'application linéaire T admet une application inverse S si et seulement si A est inversible. Dans ce cas $S(\overrightarrow{x}) = A^{-1} \cdot \overrightarrow{x}$.

Exemple. L'inverse de la matrice de rotation R_{ϕ} est $R_{-\phi}$.

EXEMPLE.

Soit T l'application linéaire représentée par $A=\left(egin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right).$



2.5.1 Factorisation LU

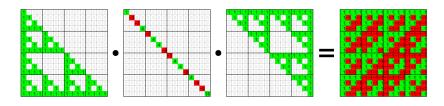
Alan Turing (1912-1954) introduit cette décomposition de matrices en 1948.

Une décomposition A = LU est telle que

- L est carrée, triangulaire inférieure ("lower") avec des 1 sur la diagonale;
- ② *U* est une forme échelonnée de *A* ("upper").

2.5.2 Factorisation LDU

Une variante avec une matrice diagonale D au milieu



by Watchduck (a.k.a. Tilman Piesk)

Il s'agit d'une matrice de Walsh. Admirez les fractales de Sierpinski qui apparaissent dans L et U!

2.5.3 Utilité de la factorisation LU

SLOGAN

La factorisation LU est pratique pour résoudre $\overrightarrow{Ax} = \overrightarrow{b}$.

Pourquoi? Le système $LU\overrightarrow{x} = \overrightarrow{b}$ se résout en deux temps.

- Posons $U\overrightarrow{x} = \overrightarrow{y}$. Le système $L\overrightarrow{y} = \overrightarrow{b}$ est simple à résoudre car L est triangulaire!
- ② Le système $U\overrightarrow{x} = \overrightarrow{y}$ est facile à résoudre car U est échelonnée!

En pratique il vaut la peine de calculer la factorisation LU si on doit résoudre des systèmes $\overrightarrow{Ax} = \overrightarrow{b}$ pour de nombreux \overrightarrow{b} .