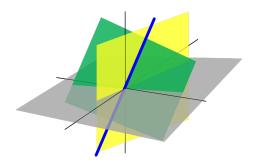
Algèbre Linéaire Cours du 24 septembre

Jérôme Scherer



FIN DU DEUXIÈME EXEMPLE.

Soit $a \in \mathbb{R}$ un paramètre et W l'ensemble

$$\left\{ \begin{pmatrix} 0 \\ a \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \mid \lambda, \mu \in \mathbb{R} \right\}$$

On cherche les valeurs de a pour lesquelles W est un sous-espace vectoriel de \mathbb{R}^4 .

SUITE.

RAPPELS

DÉFINITION

Soient $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ des vecteurs de \mathbb{R}^n . Une combinaison linéaire de ces vecteurs est un vecteur de la forme

$$\lambda_1 \overrightarrow{v_1} + \cdots + \lambda_k \overrightarrow{v_k}$$

pour des nombres réels $\lambda_1, \ldots, \lambda_k$.

L'ensemble de toutes ces combinaisons linéaires est appelé sous-espace engendré par $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ et on le note $\text{Vect}\{\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}\}.$

Le sous-espace engendré par un vecteur non nul est une droite passant par l'origine, deux vecteurs non colinéaires engendrent un plan, etc.

1.7.1 Indépendance linéaire

DÉFINITION

On dit que les vecteurs v_1, \ldots, v_k d'un espace vectoriel V sont libres ou linéairement indépendants si la seule solution du système vectoriel

$$x_1 \cdot v_1 + \cdots + x_k \cdot v_k = 0$$

est la solution triviale $x_1 = x_2 = \cdots = x_k = 0$.

Si la famille $\{v_1, \ldots, v_k\}$ n'est pas libre, on dit que les vecteurs sont liés ou linéairement dépendants.

Exemple. Les vecteurs
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ sont libres.

PREUVE ET AUTRES EXEMPLES.

1.7.2 Terminologie

Si les vecteurs v_1, \ldots, v_k sont liés, il existe par définition des nombres réels $\alpha_1, \ldots, \alpha_k$ tels que

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$$

et au moins l'un de ces α_i est non nul!

$$\alpha_i \mathbf{v}_i = -\alpha_1 \mathbf{v}_1 - \dots - \alpha_{i-1} \mathbf{v}_{i-1} - \alpha_{i+1} \mathbf{v}_{i+1} - \dots - \alpha_k \mathbf{v}_k$$

$$v_{i} = -\frac{\alpha_{1}}{\alpha_{i}}v_{1} - \cdots - \frac{\alpha_{i-1}}{\alpha_{i}}v_{i-1} - \frac{\alpha_{i+1}}{\alpha_{i}}v_{i+1} - \cdots - \frac{\alpha_{k}}{\alpha_{i}}v_{k}$$

On dit que v_i dépend linéairement des autres vecteurs. Attention ! Ce n'est pas forcément vrai pour chaque v_i .

EXEMPLE.

1.7.3 Cas particuliers

Le cas k=1

Un vecteur v est linéairement indépendant si et seulement si il est non nul.

En effet si v=0, alors le système $x\cdot v=0$ admet une infinité de solutions. Par contre, si $v\neq 0$, alors la seule solution est x=0.

PROPOSITION

Toute famille de vecteurs contenant le vecteur nul est liée.

Preuve. On a toujours
$$1 \cdot 0 + 0 \cdot v_2 + \cdots + 0 \cdot v_k = 0$$
.

Le cas k=2

Deux vecteurs \overrightarrow{v} et \overrightarrow{w} de \mathbb{R}^n sont linéairement indépendants si et seulement si ils ne sont pas colinéaires.

DÉMONSTRATION

Supposons que les vecteurs sont colinéaires, disons $\overrightarrow{w} = \alpha \overrightarrow{v}$. Alors

$$\alpha \overrightarrow{v} - \overrightarrow{w} = \overrightarrow{0}$$

est une combinaison linéaire qui donne le vecteur nul.

Supposons maintenant que les vecteurs \overrightarrow{v} et \overrightarrow{w} sont linéairement dépendants. Il existe alors une combinaison linéaire

$$\alpha \overrightarrow{v} + \beta \overrightarrow{w} = \overrightarrow{0}$$

et au moins l'un des coefficients α ou β est non nul.

$$oldsymbol{0} \ lpha
eq 0$$
, alors $\overrightarrow{\mathbf{v}} = -rac{eta}{lpha} \overrightarrow{\mathbf{w}}$;

1.7.4 Unicité des solutions

PROPOSITION

Soit A une matrice $m \times n$. Alors le système homogène $A\overrightarrow{x} = \overrightarrow{0}$ admet comme unique solution $\overrightarrow{x} = \overrightarrow{0}$ si et seulement si les colonnes de A sont linéairement indépendantes.

En effet si $\overrightarrow{a_1}, \dots, \overrightarrow{a_n}$ sont les colonnes de A, le système homogène ci-dessus est équivalent au système vectoriel suivant :

$$x_1\overrightarrow{a_1} + \cdots + x_n\overrightarrow{a_n} = \overrightarrow{0}$$

COROLLAIRE

Si k > n, alors toute famille $\{\overrightarrow{v}_1, \dots, \overrightarrow{v}_k\}$ de \mathbb{R}^n est liée.

EXEMPLES.

1.7.5 AGRANDIR UNE FAMILLE LIBRE

REMARQUE

Nous avons rencontré dans des exemples des familles génératrices d'un sous-espace W "trop grandes", on pouvait supprimer certains vecteurs sans perdre la propriété d'engendrer W. En contrepartie nous voyons maintenant qu'on peut ajouter des vecteurs à certaines familles libres sans perdre la liberté.

PROPOSITION

Soit v_1, \ldots, v_k une famille libre et v un vecteur d'un espace vectoriel V. Alors les vecteurs v_1, \ldots, v_k, v sont liés si et seulement si v appartient à $\mathrm{Vect}\{v_1, \ldots, v_k\}$.

EXEMPLE.

1.8 Applications linéaires

Soient V et W des espaces vectoriels. On considère une transformation (application) $T:V\to W$. Elle associe à tout vecteur V de V un vecteur TV de W.

DÉFINITION

L'application T est linéaire si, pour tous u, v de V et tout $\alpha \in \mathbb{R}$,

- T(u+v) = Tu + Tv;
- $T(\alpha v) = \alpha(Tv).$

Soit A une matrice $m \times n$. Alors la transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ donnée par la multiplication matricielle

$$\overrightarrow{v} \mapsto A\overrightarrow{v}$$

est linéaire.

1.8.1 Exemples

- ① L'application $p: \mathbb{R}^3 \to \mathbb{R}^2$ qui projette $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ sur $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ est linéaire puisqu'elle est représentée par la matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- ② L'homothétie de rapport 3 dans \mathbb{R}^2 est linéaire puisqu'elle est représentée par la matrice $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.
- ① La symétrie d'axe Ox dans \mathbb{R}^2 est linéaire puisqu'elle est représentée par la matrice $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

1.8.2 Propriétés

PROPOSITION

Soit T une application linéaire. Alors

- $T(\alpha u + \beta v) = \alpha T u + \beta T v;$
- T(0) = 0.

Preuve. On calcule sans réfléchir!

$$T(\alpha u + \beta v) = T(\alpha u) + T(\beta v) = \alpha Tu + \beta Tv$$

et d'autre part

$$T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$$

1.8.3 Autres exemples

$$\bullet \quad T: \mathbb{R}^2 \to \mathbb{R}^3 \text{ définie par } T \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} a \\ b \\ 0 \end{array} \right) \text{ est linéaire}.$$

② $T: \mathbb{P}_n \to \mathcal{C}(\mathbb{R}, \mathbb{R})$ définie par T(p) = p(t) est linéaire.

1.9 La matrice d'une application linéaire

SLOGAN

Toutes les applications linéaires sont représentées par des matrices.

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire. On choisit les vecteurs

$$\overrightarrow{e_1} = \left(egin{array}{c} 1 \\ 0 \\ 0 \\ dots \\ 0 \end{array}
ight) \quad \overrightarrow{e_2} = \left(egin{array}{c} 0 \\ 1 \\ 0 \\ dots \\ 0 \end{array}
ight) \quad \ldots \quad \overrightarrow{e_n} = \left(egin{array}{c} 0 \\ 0 \\ dots \\ 0 \\ 1 \end{array}
ight)$$

Ils engendrent \mathbb{R}^n puisque $\overrightarrow{x} = x_1 \overrightarrow{e_1} + \cdots + x_n \overrightarrow{e_n}$. C'est la seule combinaison linéaire qui donne \overrightarrow{x} car les $\overrightarrow{e_i}$ sont libres.

1.9.1 Construction de la matrice

SLOGAN

Si on connaît les vecteurs $T\overrightarrow{e_i}$, alors on connaît T.

On pose $\overrightarrow{a_i} = T\overrightarrow{e_i}$ et on forme la matrice $m \times n$

$$A = (\overrightarrow{a_1} \dots \overrightarrow{a_n})$$

Pour tout vecteur \overrightarrow{x} de \mathbb{R}^n on peut écrire

$$T\overrightarrow{x} = T(x_1\overrightarrow{e_1} + \dots + x_n\overrightarrow{e_n})$$

= $x_1T\overrightarrow{e_1} + \dots + x_nT\overrightarrow{e_n}$
= $x_1\overrightarrow{a_1} + \dots + x_n\overrightarrow{a_n} = A\overrightarrow{x}$

THÉORÈME

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire. Il existe alors une unique matrice A de taille $m \times n$ telle que $T\overrightarrow{x} = A\overrightarrow{x}$.

1.9.2 Exemples

SLOGAN

Les colonnes de la matrice de T sont les images des vecteurs $\overrightarrow{e_i}$.

Quelles sont toutes les applications linéaires $T:\mathbb{R}\to\mathbb{R}$? Elles sont données par une matrice 1×1 , c'est-à-dire par un seul nombre réel a. Ici $\overrightarrow{e_1}=(1)$ et ainsi

$$Tx = ax$$

Exemple. Dans \mathbb{R}^3 , la rotation d'axe Ox et d'angle 90° est linéaire. Quelle est sa matrice?

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)$$