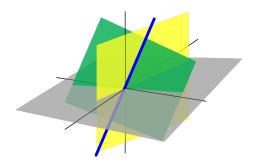
ALGÈBRE LINÉAIRE Cours du 17 décembre

Jérôme Scherer



A.14 Construction de corps finis

La méthode générale de construction des corps finis fonctionne comme suit. Soit p un nombre premier.

- Trouver un polynôme p(t) unitaire irréductible de degré n dans $\mathbb{F}_p[t]$.
- Considérer l'ensemble K de tous les restes de division par p(t). Il y en a p^n .
- **o** Définir la somme dans K comme dans $\mathbb{F}_p[t]$.
- **1** Définir le produit dans K par celui de $\mathbb{F}_p[t]$, modulo p(t).
- **6** Alors K est un corps de cardinalité p^n .

A.15 LA NOTION DE CLASSE

Nous avons construits \mathbb{F}_p comme le corps des restes de la division euclidienne des entiers \mathbb{Z} par p, un nombre premier. Chaque entier dont le reste de la division vaut 2 représente alors dans \mathbb{Z} le même élément dans \mathbb{F}_p :

$$\dots$$
, 2 – 2 p , 2 – p , 2, 2 + p , 2 + 2 p , \dots

On dit que le reste 2 est la classe de tous ces nombres, on écrit souvent $[2] \in \mathbb{F}_p$ pour distinguer cet élément du nombre entier 2.

Dans \mathbb{F}_{49} , l'élément α est la classe [t]. C'est un élément qui est représenté dans $\mathbb{F}_7[t]$ par tous les polynômes dont le reste de la division par t^2-3 vaut t, par exemple

$$t^2 + t + 3, t^3 + 5t, \dots$$

A.16 Quelques faits sans preuve

PROPOSITION

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un polynôme irréductible de degré n dans $\mathbb{F}_p[t]$.

THÉORÈME

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un corps fini de cardinalité p^n .

REMARQUE

En fait un tel corps est unique à isomorphisme près, ce qui signifie que deux choix différents de polynômes p(t) et q(t) donnent des corps $\mathbb{F}_p[t]/(p(t))$ et $\mathbb{F}_p[t]/(q(t))$ qui sont isomorphes.

Il existe donc un isomorphisme $f: \mathbb{F}_p[t]/(p(t)) \to \mathbb{F}_p[t]/(q(t))$.

A.16' Quelques faits sans preuve

THÉORÈME

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un corps fini de cardinalité p^n .

La construction explicite est la suivante : on choisit un polynôme (unitaire) irréductible de degré n dans $\mathbb{F}_p[t]$ et on pose $\mathbb{F}_{p^n} = \mathbb{F}_p[t]/(p(t))$.

NOTATION

On note α l'élément représenté par t. Les éléments de \mathbb{F}_{p^n} sont les restes de la division par p(t), ce sont donc des expression de la forme $a_0+a_1\alpha+\cdots+a_{n-1}\alpha^{n-1}$. Ainsi $\{1,\alpha,\ldots,\alpha^{n-1}\}$ est une base de \mathbb{F}_{p^n} comme \mathbb{F}_p -espace vectoriel.

A.17 DEUX CORPS À HUIT ÉLÉMENTS?

On cherche dans $\mathbb{F}_2[t]$ un polynôme de degré 3 irréductible. Il y a huit polynômes en tout :

- **1** t^3 , $t^3 + t$, $t^3 + t^2$ et $t^3 + t^2 + t$ s'annulent en 0 : éliminés!
- ② $t^3 + 1$, $t^3 + t^2 + t + 1$ s'annulent en 1 : éliminés!

Proposition

Les polynômes $p(t) = t^3 + t + 1$ et $q(t) = t^3 + t^2 + 1$ sont les seuls polynômes de degré 3 irréductibles de $\mathbb{F}_2[t]$.

On peut donc construire $\mathbb{F}_8 = \mathbb{F}_2[t]/(p(t))$ et $\mathbb{F}_8' = \mathbb{F}_2[t]/(q(t))$. Appelons α la classe de t dans \mathbb{F}_8 et β celle de t dans \mathbb{F}_8' .

A.18 REMARQUES

A.19 Résumé

PROPOSITION

Les polynômes $p(t) = t^3 + t + 1$ et $q(t) = t^3 + t^2 + 1$ sont les seuls polynômes de degré 3 irréductibles de $\mathbb{F}_2[t]$.

On peut donc construire $\mathbb{F}_8 = \mathbb{F}_2[t]/(p(t))$ et $\mathbb{F}_8' = \mathbb{F}_2[t]/(q(t))$.

Appelons α la classe de t dans \mathbb{F}_8 et β celle de t dans \mathbb{F}_8' .

- **1** Dans \mathbb{F}_8 , on a $t^3 + t + 1 = 0$, autrement dit $\alpha^3 = \alpha + 1$.
- ② Dans \mathbb{F}_8' , on a $t^3 + t^2 + 1 = 0$, autrement dit $\beta^3 = \beta^2 + 1$.

REMARQUE

Les éléments α et β se comportent différemment sous la multiplication !

A.20 Un seul corps à huit éléments

Pour construire un isomorphisme $f: \mathbb{F}_8 \to \mathbb{F}_8'$, nous devons envoyer zéro sur zéro, et un sur un, mais où donc envoyer α ?

Nous avons calculé les puissances de α comme combinaisons linéaires de 1, α et α^2 , puis nous nous occupons de celles de β pour comparer la structure multiplicative de ces deux corps.

$$\alpha^3 = \alpha + 1$$
;

$$\bullet \alpha^4 = (\alpha + 1)\alpha = \alpha^2 + \alpha;$$

$$\alpha^5 = \alpha^2 + \alpha + 1$$

$$\alpha^6 = \alpha^2 + 1$$

$$\alpha^7 = 1$$

A.20 UN ISOMORPHISME

A.20 UN ISOMORPHISME, SUITE

7.2.0 Rappel: Terminologie

- Equivalence. A ~ B si on peut passer de A à B par des opérations élémentaires sur les lignes. Utilité : Résolution de systèmes, calcul du rang.
- **3 Similitude.** $A \approx B$ si on peut passer de A à B par un changement de base $A = SBS^{-1}$. Utilité : Représentation d'une application linéaire, diagonalisation.
- Congruence. A ≈ B si on peut passer de A à B par un changement de base orthonormée A = PBP^T. Utilité : Représentation d'un produit scalaire, pour les matrices symétriques uniquement!

7.2.1 Matrices congruentes

Si A est la matrice d'un produit scalaire de V, exprimé dans la base orthonormée $C = (e_1, \ldots, e_n)$, alors

$$\langle u, v \rangle = (u)_{\mathcal{C}}^{T} A(v)_{\mathcal{C}}$$

On calcule par exemple $\overrightarrow{e}_i^T A \overrightarrow{e}_j = \overrightarrow{e}_i^T \overrightarrow{a}_j = a_{ij}$

et comme $\langle e_i, e_j \rangle = a_{ij}$ doit coïncider avec $\langle e_j, e_i \rangle = a_{ji}$, la matrice A est symétrique.

PROPOSITION

Deux matrices symétriques A et B représentent le même produit scalaire si elles sont congruentes.

7.2.2 Preuve

Soit P une matrice orthogonale. On considère P comme une matrice de changement de base $(Id)_{\mathcal{B}}^{\mathcal{C}an}$ dont les colonnes sont les vecteurs d'une base orthonormée exprimés en coordonnées dans la base canonique.

On pose
$$\overrightarrow{y} = P^{-1}\overrightarrow{x} = P^{T}\overrightarrow{x} = (Id)_{Can}^{B}\overrightarrow{x}$$

Si \overrightarrow{x} est un vecteur de \mathbb{R}^n exprimé en coordonnées dans la base canonique, \overrightarrow{y} est $(\overrightarrow{x})_{\mathcal{B}}$, ce même vecteur exprimé dans la nouvelle base.

Nous avons $\langle \overrightarrow{x}, \overrightarrow{x'} \rangle = \overrightarrow{x}^T A \overrightarrow{x'}$ et nous devons démontrer que la matrice congruente $B = P^T A P$ représente le même produit scalaire, mais pour des vecteurs exprimés dans la base orthonormée \mathcal{B} .

7.2.2 FIN DE LA PREUVE

7.2.3 Encore le Théorème spectral

On travaille avec

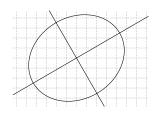
- **①** un espace vectoriel V de dimension finie n et une base \mathcal{B} ;
- un produit scalaire représenté par une matrice symétrique A par rapport à la base B.

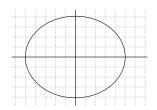
THÉORÈME SPECTRAL

Il existe un changement de base orthonormée qui permet de représenter ce produit scalaire par une matrice diagonale.

7.2.4 Exemple : ellipse

Que représente l'équation $\frac{9}{2}x_1^2 - \sqrt{3}x_1x_2 + \frac{11}{2}x_2^2 = 100$? C'est une courbe de niveau de la fonction de deux variables $Q(x_1, x_2)$.





Via une rotation de 30° on amène les axes de l'ellipse en position standard, $4y_1^2 + 6y_2^2 = 100$.

On peut calculer la longueur des axes de l'ellipse : Si $y_2 = 0$, alors $4y_1^2 = 100$, i.e. $y_1 = \pm 5$. Le grand axe mesure 10.

Si $y_1 = 0$, $y_2 = \pm \sqrt{50/3}$, la longueur du petit axe vaut ≈ 8.2 .

7.4. Décomposition en valeurs singulières

Soit A une matrice $m \times n$ et $T : \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire associée.

Alors T transforme la sphère unité de \mathbb{R}^n

$$S = \{ \overrightarrow{x} \in \mathbb{R}^n \mid ||\overrightarrow{x}|| = 1 \}$$

en un ellipsoïde de \mathbb{R}^m .

QUESTION

Dans quelle direction l'étirement est-il maximal?

On cherche donc un vecteur $\overrightarrow{v} \in S$ tel que $||A\overrightarrow{v}||$ est maximal :

$$\|A\overrightarrow{v}\|^2 = (A\overrightarrow{v})^T A \overrightarrow{v} = \overrightarrow{v}^T A^T A \overrightarrow{v}$$

7.4.1 Etirement Maximal

Soit $B = A^T A$. Cette matrice symétrique représente une forme bilinéaire symétrique dont on cherche le maximum, lorsqu'on l'évalue sur un vecteur de norme 1.

PROPOSITION

Le maximum (au carré) est égal à la valeur propre la plus grande de la matrice $B = A^T A$.

Exemple. Soit
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
. L'image de la sphère unité de \mathbb{R}^3 est une ellipse dans \mathbb{R}^2 .

7.4.2 L'IMAGE DE LA SPHÈRE UNITÉ

7.4.3 Calcul

$$B = A^{T} A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} = \begin{pmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{pmatrix}$$

$$c_B(t) = -t(t-25)(t-9)$$

L'étirement maximal est de 5. Mais dans quelle direction?

$$E_{25} = \operatorname{Vect}\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \operatorname{Vect}\begin{pmatrix} \sqrt{2}/2\\\sqrt{2}/2\\0 \end{pmatrix}$$

7.4.3 Calcul, suite

$$\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 5\sqrt{2}/2 \\ 5\sqrt{2}/2 \end{pmatrix}$$

Ce vecteur est l'image par T d'un vecteur unitaire (de la sphère unité). Il est de longueur maximale (5) et correspond au grand axe de l'ellipse que nous avons vue tout-à-l'heure.

LEMME

Soit A une matrice $m \times n$ et $B = A^T A$. Les valeurs propres de B sont positives.

7.4.3 PREUVE

7.4.4 Valeurs singulières

On ordonne les valeurs propres de $B = A^T A$ de sorte que

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$$

DÉFINITION

Les valeurs singulières de A sont les $\sigma_i = \sqrt{\lambda_i}$.

Remarque. On a $\sigma_i = ||Av_i||$ où v_i est un vecteur propre unitaire de B pour la valeur propre λ_i .

7.4.4 Exemple, suite

Soit
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
. Alors

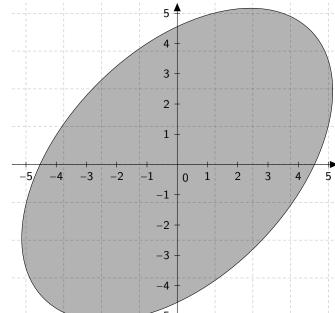
$$\sigma_1 = 5$$
, $\sigma_2 = 3$, $\sigma_3 = 0$.

$$\left(\left(\sqrt{2}/6 \right) \right)$$

$$E_9 = \operatorname{Vect} \left\{ \begin{pmatrix} \sqrt{2}/6 \\ -\sqrt{2}/6 \\ 2\sqrt{2}/3 \end{pmatrix} \right\} = \operatorname{Vect} \left\{ \overrightarrow{v}_2 \right\}$$

$$\overrightarrow{a} \overrightarrow{v}_2 = \begin{pmatrix} 3\sqrt{2}/2 \\ -3\sqrt{2}/2 \end{pmatrix}$$

7.4.4 Grand axe et petit axe



7.4.5 L'IMAGE DE A

Soit A une matrice de taille $m \times n$, (v_1, \ldots, v_n) une base orthonormée de vecteurs propres unitaires de $B = A^T A$ pour les valeurs propres $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$.

THÉORÈME

Si A admet exactement r valeurs singulières non nulles, alors (Av_1, \ldots, Av_r) est une base orthogonale de l'image de A.

Preuve.
$$(Av_i) \cdot (Av_j) = v_i^T A^T A v_j = v_i^T \lambda_j v_j = 0$$
 pour $i \neq j$.

En particulier $||Av_i||^2 = \lambda_i ||v_i||^2 > 0$ et les vecteurs Av_1, \ldots, Av_r sont orthogonaux, donc linéairement indépendants.

Ils engendrent Im A car $Av_{r+1} = \cdots = Av_n = 0$.

7.4.6 Décomposition en valeurs singulières

Une décomposition de A en valeurs singulières (SVD) est une factorisation $A = U\Sigma V^T$ telle que

- U est orthogonale $m \times m$;
- \bigcirc V est orthogonale $n \times n$;

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \ddots & 0 & \dots & 0 \\ 0 & 0 & \sigma_r & 0 & 0 \\ 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix} \text{ est de taille } m \times n.$$

Les lignes de U et de V sont appelés les vecteurs singuliers à gauche et à droite de A.

7.4.6 Existence de la SVD

- On choisit $V = (\overrightarrow{v}_1 \cdots \overrightarrow{v}_n)$ où les \overrightarrow{v}_i forment une base orthonormée de vecteurs propres de $B = A^T A$, classés dans l'ordre décroissant des valeurs propres λ_i .
- On pose $\overrightarrow{u}_i = \frac{A\overrightarrow{v}_i}{\|A\overrightarrow{v}_i\|} = \frac{1}{\sigma_i} A \overrightarrow{v}_i$ pour $1 \le i \le r$.
- ① On complète en une base orthonormée $(\overrightarrow{u}_1,\ldots,\overrightarrow{u}_r,\overrightarrow{u}_{r+1},\ldots,\overrightarrow{u}_m)$ de \mathbb{R}^m et on pose $U=(\overrightarrow{u}_1\cdots\overrightarrow{u}_m)$.
- On calcule $U\Sigma = (\sigma_1 \overrightarrow{u}_1, \dots, \sigma_r \overrightarrow{u}_r, \overrightarrow{0}, \dots, \overrightarrow{0}) = A(\overrightarrow{v}_1 \dots \overrightarrow{v}_n) = AV.$

7.4.6 Exemple, fin

Si
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
 et $B = A^T A$. Alors $E_0 = \text{Vect} \left\{ \begin{pmatrix} 2/3 \\ -2/3 \\ -1/3 \end{pmatrix} \right\}$.

Donc
$$V = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/6 & 2/3 \\ \sqrt{2}/2 & -\sqrt{2}/6 & -2/3 \\ 0 & 2\sqrt{2}/3 & -1/3 \end{pmatrix}$$

On connaît déjà $U = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix}$ et enfin $\Sigma = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$.

7.4.7 Commentaires

- Fonctionne pour des matrices non diagonalisables, même rectangulaires!
- Utile pour des applications numériques. Les matrices U et V étant orthogonales, l'estimation de l'erreur ou de l'imprécision est dans Σ uniquement.
- Utile en statistiques (PCA).
- Utile pour la compression de données

7.4.7 Compression des données

Exemple trouvé chez http://andrew.gibiansky.com/blog/ Une photo (d'un tigre) est codée par une matrice A de rang 500.

Chacune des images suivantes est produite en remplaçant la matrice

$$A = U\Sigma V^T$$

par la meilleure approximation possible de rang m, c'est-à-dire

$$U\Sigma_m V^T$$

où Σ_m est la matrice Σ_m est obtenue en ne gardant que les m premières valeurs singulières (les plus grandes) :

7.4.7 Compression des données

