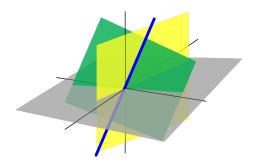
Algèbre Linéaire

Cours du 19 novembre

Jérôme Scherer



5.2.1 LE POLYNÔME CARACTÉRISTIQUE

DÉFINITION

Soit A une matrice $n \times n$. Le polynôme caractéristique de A est $c_A(t) = \det(A - tI_n)$.

THÉORÈME

Un nombre λ est valeur propre de A si et seulement si c'est une racine de $c_A(t)$, i.e. $\det(A - \lambda I) = 0$.

Sa multiplicité en tant que racine est appelée multiplicité algébrique.

DÉFINITION

Soit λ une valeur propre de A. La multiplicité géométrique de λ est dim $\mathrm{Ker}(A-\lambda I_n)$.

5.2.2 Similitude \approx

DÉFINITION

Deux matrices carrées A et B de taille $n \times n$ sont semblables s'il existe une matrice inversible P de taille $n \times n$ telle que

$$A = P^{-1}BP$$

On note $A \approx B$.

THÉORÈME

Deux matrices semblables ont le même polynôme caractéristique.

Elles ont donc en particulier les mêmes valeurs propres.

La réciproque est fausse, puisque la matrice nulle n'est semblable qu'à elle-même, mais la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ a également t^2 comme polynôme caractéristique.

5.2.2 Exemple

Attention! Deux matrices ayant les mêmes valeurs propres ne sont pas semblables en général. La matrice A est un bloc de Jordan:

$$A = \left(\begin{array}{cc} 5 & 1 \\ 0 & 5 \end{array}\right) \quad B = \left(\begin{array}{cc} 5 & 0 \\ 0 & 5 \end{array}\right)$$

La seule valeur propre de A et de B est 5, de multiplicité algébrique 2 car $c_A(t)=(t-5)^2=c_B(t)$. Mais

$$A \not\approx B$$

En effet

$$P \cdot B \cdot P^{-1} = P \cdot (5I_2) \cdot P^{-1} = 5P \cdot I_2 \cdot P^{-1} = 5P \cdot P^{-1} = 5I_2 = B.$$
 La multiplicité géométrique de 5 est 1 pour la matrice A , mais 2 pour B .

5.2.3 Les relations \sim et \approx

- Deux matrices A et B de $M_{n\times n}(\mathbb{R})$ sont équivalentes selon les lignes et les colonnes s'il existe des opérations élémentaires sur les lignes et les colonnes qui transforment A en B.
- Or, effectuer des opérations sur les lignes de A revient à multiplier A à gauche par une matrice inversible P;
- et effectuer des opérations sur les colonnes de A revient à multiplier A à droite par une matrice inversible Q.

DÉFINITION

Les matrices A et B sont équivalentes s'il existe deux matrices inversibles P et Q telles que PAQ = B. On note $A \sim B$.

On note $A \sim B$. Clairement $A \approx B \Rightarrow A \sim B$.

5.2.4 Calcul du polynôme caractéristique

Soit
$$A = \begin{pmatrix} 4 & 0 & -1 \\ -1 & 0 & 4 \\ 0 & 2 & 3 \end{pmatrix}$$
. Par manque d'inspiration on calcule $c_A(t)$ avec Sarrus

$$\begin{vmatrix} 4-t & 0 & -1 \\ -1 & -t & 4 \\ 0 & 2 & 3-t \end{vmatrix} = -t^3 + 7t^2 - 4t - 30$$

Ce n'est pas facile de voir que les racines de $c_A(t)$ sont 5, $1-\sqrt{7}$ et $1+\sqrt{7}...$

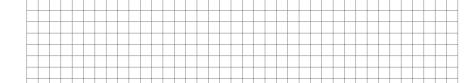
5.2.4 LE POLYNÔME CARACTÉRISTIQUE AVEC DES

OPÉRATIONS ÉLÉMENTAIRES

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + y - z \\ -6x - y + 4z \\ y + 2z \end{pmatrix}$$

Alors
$$A = (f)_{Can}^{Can} = \begin{pmatrix} 3 & 1 & -1 \\ -6 & -1 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
. Calculons $c_A(t)$.



5.2.4 c_A(t) AVEC DES OPÉRATIONS

5.2.4 ESPACES PROPRES

5.3.1 DIAGONALISATION

DÉFINITION

Une matrice est diagonalisable si elle est semblable à une matrice diagonale, i. e. il existe P inversible telle que $P^{-1}AP$ est diagonale.

THÉORÈME

Une matrice A de taille $n \times n$ est diagonalisable si et seulement si il existe une base \mathcal{B} de \mathbb{R}^n formée de vecteurs propres de A.

Preuve. On regarde A comme la matrice de $T: \mathbb{R}^n \to \mathbb{R}^n$ dans la base canonique : $T\overrightarrow{X} = A \cdot \overrightarrow{X}$ et $(T)_{\mathfrak{Can}}^{\mathfrak{Can}} = A$. Soit \mathcal{B} une autre base. Alors $(T)_{\mathcal{B}}^{\mathfrak{B}}$ est diagonale $\iff T(\overrightarrow{b}_i) = \lambda_i \overrightarrow{b}_i \iff (T(\overrightarrow{b}_i))_{\mathcal{B}} = \lambda_i \overrightarrow{e}_i$. Dans la base \mathcal{B} les coordonnées de $T(\overrightarrow{b}_i)$ sont nulles sauf la i-ème.

5.3.2 Observations

- Les colonnes de la matrice de changement de base $P = (\mathrm{Id})_{\mathfrak{B}}^{\mathfrak{C}an}$ sont les vecteurs propres de la base \mathfrak{B} .
- ② $A = PDP^{-1}$ et D est diagonale, les valeurs propres $\lambda_1, \ldots, \lambda_n$ de A se trouvent dans la diagonale, dans l'ordre choisi pour construire la base.
- Le déterminant de A est le produit des valeurs propres (avec multiplicité).

En effet
$$\det A = \det(PDP^{-1}) = \det P \det D \det(P^{-1})$$
$$= \det D = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n$$

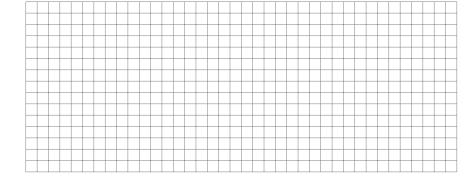
5.3.2 Exemple

Soit $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ l'application linéaire définie par

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+d & b-c \\ c-b & a+d \end{pmatrix}$$

On commence par écrire la matrice de T dans la base canonique.

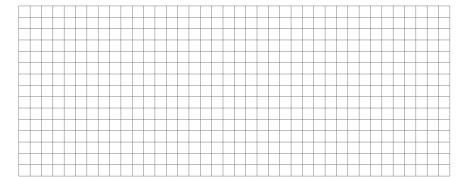
Cette matrice est de taille $4 \times 4!$



5.3.2 Exemple, suite

On calcule le polynôme caractéristique

$$c_{\mathcal{A}}(t) = \left| egin{array}{cccccc} 1-t & 0 & 0 & 1 \ 0 & 1-t & -1 & 0 \ 0 & -1 & 1-t & 0 \ 1 & 0 & 0 & 1-t \ \end{array}
ight| = \left| egin{array}{cccccc} 1-t & 0 & 0 & 1 \ 0 & 1-t & -1 & 0 \ 0 & -t & -t & 0 \ 2-t & 0 & 0 & 2-t \ \end{array}
ight|$$



5.3.2 EXEMPLE, FIN

5.3.3 Premier critère de diagonalisation

THÉORÈME

Soit A une matrice de taille $n \times n$ ayant n valeurs propres distinctes. Alors A est diagonalisable.

Preuve. Pour chaque valeur propre on a un vecteur propre. Ces n vecteurs sont libres par 5.1.5 et forment alors une base de \mathbb{R}^n .

Proposition

Soient λ et μ deux valeurs propres distinctes de A. Alors $E_{\lambda} \cap E_{\mu} = \{\overrightarrow{0}\}.$

Preuve. Soit $\overrightarrow{x} \in E_{\lambda} \cap E_{\mu}$, alors $A\overrightarrow{x} = \lambda \overrightarrow{x}$, et aussi $A\overrightarrow{x} = \mu \overrightarrow{x}$. Comme $\mu \neq \lambda$, alors $\overrightarrow{x} = \overrightarrow{0}$.

REMARQUE

Les espaces propres E_{λ} et E_{μ} forment une somme directe $E_{\lambda} \oplus E_{\mu}$.

5.3.4 Multiplicités

PROPOSITION

Soit λ une valeur propre de A. Alors $1 \leq \dim E_{\lambda} \leq \operatorname{mult}(\lambda)$.

Preuve. E_{λ} contient un vecteur propre, non nul : $1 \leq \dim E_{\lambda}$. Si $\overrightarrow{b}_1, \ldots \overrightarrow{b}_k$ est une base de E_{λ} , on peut la compléter en une base de \mathbb{R}^n . Dans cette base la matrice devient

$$\begin{pmatrix} \lambda & 0 & 0 & * & * \\ 0 & \ddots & 0 & * & * \\ 0 & 0 & \lambda & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Le polynôme caractéristique de cette matrice est le même que celui de A et commence par $(\lambda - t)^k$. Donc $k \leq \text{mult}(\lambda)$.

5.3.5 Critère de diagonalisation

Les deux propositions ci-dessus sont les clés de notre deuxième critère. Il faut qu'il y ait assez de valeurs propres réelles et assez de vecteurs propres.

THÉORÈME

Une matrice A est diagonalisable (sur \mathbb{R}) si et seulement si

- Le polynôme caractéristique est scindé : il se décompose en produit de facteurs (λt) avec des $\lambda \in \mathbb{R}$.
- ② Pour tout λ , on a $\dim E_{\lambda} = \operatorname{mult}(\lambda)$.

Si A est diagonalisable on forme une base de vecteurs propres en réunissant les vecteurs de base de chaque espace propre.

5.3.5 EXEMPLE

A.1 Les corps : Définition

Jusqu'ici nous avons développé des méthodes qui permettent de travailler avec des matrices à coefficients dans $\mathbb R$ et nous avons aussi constaté que cela fonctionne dans $\mathbb Q$. Il y a beaucoup d'autres corps de nombres! Vous connaissez bien sûr les nombres complexes, $\mathbb C$, et on pourrait refaire la théorie de la diagonalisation sur les complexes, nous en verrons d'autres.

DÉFINITION

Un corps K est un ensemble muni d'une addition + et d'une multiplication \cdot pour lesquelles les règles de calcul "usuelles" s'appliquent.

A.1 Les corps : Définition

Plus précisément on demande que

- (K,+) est un groupe abélien : il vérifie les axiomes d'associativité, de commutativité, il y a un élément neutre 0 et chaque nombre x admet un opposé -x.
- ② Le produit est associatif, commutatif, il existe un élément neutre 1 et chaque nombre $x \neq 0$ admet un inverse x^{-1} .
- **1** La multiplication est distributive par rapport à l'addition : x(y+z) = xy + xz pour tous $x, yz \in K$.

A.2 Exemple : Le corps \mathbb{F}_2

Soit $\mathbb{F}_2 = \{0, 1\}$. On définit somme et produit par les tables :

+	0	1
0	0	1
1	1	0
	0	1
0	0	0
0	0	1

REMARQUE

La symétrie des tableaux montre la commutativité des opérations.

Pour + la ligne de 0 montre que c'est un élément neutre et pour \cdot c'est celle de 1 qui le prouve.

A.3. Application: Le code de Hamming

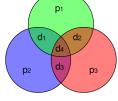
En 1946 l'ingénieur Hamming invente le premier code autocorrecteur pour ordinateurs à cartes perforées.

Son idée est d'ajouter à chaque mot de 4 bits $d_1d_2d_3d_4$ dans $(\mathbb{F}_2)^4$ un mot de 3 bits de contrôle formé par les sommes dans \mathbb{F}_2 :

- $0 d_1 + d_2 + d_4$
- $a_1 + d_3 + d_4$
- $d_2 + d_3 + d_4$

A.3. LE CODE DE HAMMING

On utilise 16 signes comme alphabet de base : 0000, 0001, ..., 1110, 1111. On visualise les bits de contrôle p_1, p_2 et p_3 comme suit :



Si une erreur se glisse dans la transmission, le code est capable de s'autocorriger. Si le mot $d_1d_2d_3d_4p_1p_2p_3=1001010$ est transmis, la parité de $d_1+d_2+d_4$ est correcte, mais les deux autres sont erronés. Ainsi il faut corriger le seul nombre commun aux bits de contrôle p_2 et p_3 qui n'apparaît pas dans p_1 .