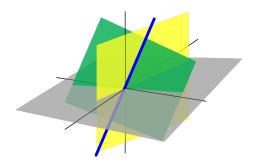
ALGÈBRE LINÉAIRE COURS DU 14 NOVEMBRE

Jérôme Scherer



5.1.1 Rappels sur les espaces propres

On traite le cas d'une application linéaire $T:V\to V$ (aussi appelé endomorphisme car la source et le but de T coïncident).

DÉFINITION

Un vecteur non nul x de V est un vecteur propre de T s'il existe un nombre réel λ tel que $T(x) = \lambda x$. On appelle alors λ une valeur propre de T.

L'espace propre E_{λ} est par définition l'ensemble de tous les vecteurs x de V ayant la propriété que $T(x) = \lambda x$. Il s'agit donc de l'ensemble de tous les vecteurs propres et du vecteur nul.

PROPOSITION

Si λ est une valeur propre, l'espace propre E_{λ} est le sous-espace $\operatorname{Ker}(\mathcal{T}-\lambda Id)$.

5.1.1 Exemple: Les rotations

Soit $0 \le \alpha < 2\pi$ et $R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ la matrice de la rotation centré en (0;0) et d'angle α .

PROPOSITION

Le nombre λ est une valeur propre de R_{α} si et seulement si la matrice $R_{\alpha}-\lambda I_2$ n'est pas inversible si et seulement si $\lambda^2-2\lambda\cos\alpha+1=0.$

- Si $\alpha \in \{0, \pi\}$, alors $R_{\alpha} = I_2$ ou $-I_2$;
- ② Si $\alpha \neq 0, \pi$, alors le discriminant $\Delta < 0$, il n'existe donc aucun nombre réel λ qui est valeur propre de R_{α} ; il n'y a pas de valeur propre réelle, mais deux valeurs propres complexes.

5.1.4 LA VALEUR PROPRE NULLE

Un vecteur propre doit être non nul, mais zéro peut être une valeur propre.

Exemple. La matrice $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ admet 0 comme valeur propre puisque

$$\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

PROPOSITION

Zéro est valeur propre de $A \iff \operatorname{Ker} A \neq \{\overrightarrow{0}\}\$

 \iff rang $A < n \iff A$ n'est pas inversible.

5.1.5 Matrices triangulaires

PROPOSITION

Les valeurs propres d'une matrice triangulaire sont les coefficients diagonaux.

Le plus parlant est de traiter un exemple!

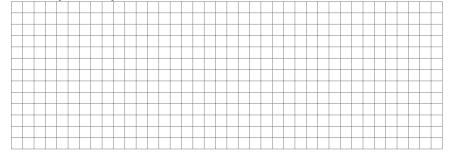
Exemple. Soit
$$A = \begin{pmatrix} -5 & -1 & 7 & 11 \\ 0 & -5 & 1 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 12 \end{pmatrix}$$
.

Le rang de cette matrice nous donne une indication sur une valeur propre évidente!

5.1.5 EXEMPLE

5.1.5 Vecteurs propres libres, les cas n = 1, 2

- Soit \overrightarrow{V}_1 un vecteur propre de la matrice carrée A. Alors la famille $\{\overrightarrow{V}_1\}$ est libre car un vecteur propre est non nul.
- ② Soit \overrightarrow{v}_1 , \overrightarrow{v}_2 deux vecteurs propres de la matrice carrée A pour des valeurs propres λ_1 et λ_2 différentes. Alors la famille $\{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ est libre.



5.1.5 Vecteurs propres libres

THÉORÈME

Soient $\lambda_1, \ldots, \lambda_k$ des valeurs propres distinctes et $\overrightarrow{V}_1, \ldots, \overrightarrow{V}_k$ des vecteurs propres d'une matrice carrée A (pour chacune de ces valeurs propres). Alors la famille $\{\overrightarrow{V}_1, \ldots, \overrightarrow{V}_k\}$ est libre.

Preuve. Par récurrence sur k. Si k=1 le résultat est évident. Supposons que k>1 et que le résultat est vrai pour moins de k vecteurs. Supposons que

$$\alpha_1 \overrightarrow{\mathsf{V}}_1 + \dots + \alpha_{k-1} \overrightarrow{\mathsf{V}}_{k-1} + \alpha_k \overrightarrow{\mathsf{V}}_k = 0$$

Nous devons montrer que tous les scalaires $\alpha_1, \ldots, \alpha_k$ sont nuls.

5.1.5 Démonstration, suite

Reprenons : $\alpha_1 \overrightarrow{v}_1 + \cdots + \alpha_{k-1} \overrightarrow{v}_{k-1} + \alpha_k \overrightarrow{v}_k = 0$. Alors

$$\overrightarrow{0} = A(\alpha_1 \overrightarrow{v}_1 + \dots + \alpha_k \overrightarrow{v}_k) = \alpha_1 A \overrightarrow{v}_1 + \dots + \alpha_{k-1} A \overrightarrow{v}_{k-1} + \alpha_k A \overrightarrow{v}_k$$

$$\Rightarrow \alpha_1 \lambda_1 \overrightarrow{\nabla}_1 + \dots + \alpha_{k-1} \lambda_{k-1} \overrightarrow{\nabla}_{k-1} + \alpha_k \lambda_k \overrightarrow{\nabla}_k = 0$$

Multiplions l'égalité de la première ligne par λ_k :

$$-(\alpha_1\lambda_k\overrightarrow{\vee}_1+\cdots+\alpha_{k-1}\lambda_k\overrightarrow{\vee}_{k-1}+\alpha_k\lambda_k\overrightarrow{\vee}_k)=\overrightarrow{0}$$

$$\Rightarrow \boxed{\alpha_1(\lambda_1 - \lambda_k)\overrightarrow{v}_1 + \dots + \alpha_{k-1}(\lambda_{k-1} - \lambda_k)\overrightarrow{v}_{k-1} = \overrightarrow{0}}$$

Comme $\lambda_i - \lambda_k \neq 0$ pour i < k, on conclut par l'hypothèse de récurrence : $\alpha_1 = \cdots = \alpha_{k-1} = 0$. Donc aussi $\alpha_k = 0$.

5.2.1 LE POLYNÔME CARACTÉRISTIQUE

Un nombre λ est une valeur propre de A si et seulement si la matrice $A - \lambda I$ n'est pas inversible. Or une matrice est inversible si et seulement si son déterminant est non nul.

THÉORÈME

Un nombre λ est valeur propre de A si et seulement si $\det(A - \lambda I) = 0$.

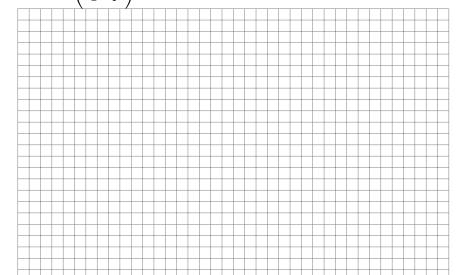
DÉFINITION

Soit A une matrice $n \times n$. Le polynôme caractéristique de A est $c_A(t) = \det(A - tI_n)$.

Une valeur propre est une racine de $c_A(t)$. Sa multiplicité en tant que racine est appelée multiplicité algébrique.

5.2.1 Exemple

Soit
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Quelles sont ses valeurs propres?



5.2.1 EXEMPLE, SUITE

5.2.1 La multiplicité algébrique

La multiplicité algébrique d'une valeur propre est sa multiplicité en tant que racine du polynôme caractéristique.

Exemple. Soit $A \in M_{5\times 5}(\mathbb{R})$ et supposons que

•
$$c_A(t) = t^3(t+3)^2$$
. Alors

②
$$c_A(t) = (t^2 + 1)^2(t - 2)$$
. Alors

Dans tous les cas il y a autant de valeurs propres, en comptant leur multiplicité algébrique, que de colonnes dans la matrice, ici 5.

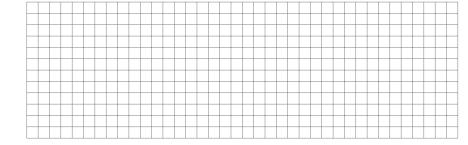
DÉFINITION

La multiplicité géométrique d'une valeur propre λ est la dimension de l'espace propre E_{λ} .

5.2.2 Matrices semblables

Deux matrices A et B de taille $n \times n$ sont semblables si elles représentent la même application linéaire, mais pour des choix de bases différentes. Concrètement, si $T: V \to V$ et \mathcal{B} , \mathcal{C} sont deux bases de V, alors $(T)^{\mathcal{B}}_{\mathcal{B}}$ et $(T)^{\mathcal{C}}_{\mathcal{C}}$ sont semblables. Or, si $P = (\mathrm{Id})^{\mathcal{C}}_{\mathcal{B}}$ est la matrice inversible de changement de base, alors

$$P^{-1}BP=(\operatorname{Id})^{\mathfrak{B}}_{\mathfrak{C}}(T)^{\mathfrak{C}}_{\mathfrak{C}}(\operatorname{Id})^{\mathfrak{C}}_{\mathfrak{B}}=(T)^{\mathfrak{B}}_{\mathfrak{B}}=A$$



5.2.2 Similitude \approx

DÉFINITION

Deux matrices carrées A et B de taille $n \times n$ sont semblables s'il existe une matrice inversible P de taille $n \times n$ telle que

$$A = P^{-1}BP.$$

Exemple. La symétrie axiale S par rapport à la droite x=y. Nous avons vu que

$$A = (S)_{\mathcal{C}an}^{\mathcal{C}an} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = (S)_{\mathcal{B}}^{\mathcal{B}} = B$$

Les matrices de changements de base sont

$$P = (\mathrm{Id})_{\mathbb{B}}^{\mathcal{C}an} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{et} \quad P^{-1} = (\mathrm{Id})_{\mathcal{C}an}^{\mathbb{B}} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

5.2.2 Exemple, suite

On vérifie "à la main" que $P^{-1}AP = B$:

$$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

5.2.3 Similitude et valeurs propres

THÉORÈME

Deux matrices semblables ont le même polynôme caractéristique.

Elles ont donc en particulier les mêmes valeurs propres.

Attention! Deux matrices ayant les mêmes valeurs propres ne sont pas semblables en général.

$$A = \left(\begin{array}{cc} 5 & 1 \\ 0 & 5 \end{array}\right) \quad B = \left(\begin{array}{cc} 5 & 0 \\ 0 & 5 \end{array}\right)$$

La seule valeur propre de A et de B est 5, de multiplicité algébrique 2 car $c_A(t)=(t-5)^2=c_B(t)$. Mais

$$A \not\approx B$$

5.2.3 EXPLICATION