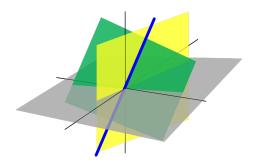
Algèbre Linéaire

Cours du 12 novembre

Jérôme Scherer



4.7 Changement de base : Rappels

Soit V un espace vectoriel de dimension n.

- Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base. On peut alors écrire un vecteur $x \in V$ en coordonnées $(x)_{\mathcal{B}}$, où $x = x_1e_1 + \dots + x_ne_n$.
- ② Soit $\mathcal{C} = (f_1, \dots, f_n)$ une autre base. On peut alors écrire un vecteur $x \in V$ en coordonnées $(x)_{\mathcal{C}}$.
- Pour passer de $(x)_{\mathbb{B}}$ à $(x)_{\mathbb{C}}$, on utilise la matrice de changement de base $P = (Id)_{\mathbb{B}}^{\mathbb{C}}$ dont les colonnes sont $(e_i)_{\mathbb{C}}$. Alors

$$P(x)_{\mathbb{B}} = (Id)^{\mathbb{C}}_{\mathbb{B}}(x)_{\mathbb{B}} = (x)_{\mathbb{C}}$$

• La matrice de changement de base inverse $Q = (Id)_{\mathcal{C}}^{\mathcal{B}} = P^{-1}$.

4.7.3 Exemple

On considère les bases $\mathcal{B}=(\overrightarrow{b}_1,\overrightarrow{b}_2)$ et $\mathcal{C}=(\overrightarrow{c}_1,\overrightarrow{c}_2)$ de \mathbb{R}^2 où

$$\overrightarrow{b}_1 = \begin{bmatrix} -1 \\ 8 \end{bmatrix} \overrightarrow{b}_2 = \begin{bmatrix} 1 \\ -7 \end{bmatrix} \overrightarrow{c}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \overrightarrow{c}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

On écrit la matrice "doublement augmentée" :

$$\left[\begin{array}{cc|cc}
1 & 1 & -1 & 1 \\
2 & 1 & 8 & -7
\end{array}\right]$$

En effet échelonner et réduire cette matrice correspond à trouver simultanément les nombres x_1 et x_2 tels que $x_1 \overrightarrow{c}_1 + x_2 \overrightarrow{c}_2 = \overrightarrow{b}_1$ et y_1, y_2 tels que $y_1 \overrightarrow{c}_1 + y_2 \overrightarrow{c}_2 = \overrightarrow{b}_2$.

4.7.3 Exemple, suite

On échelonne donc :

$$\left[\begin{array}{c|c|c} 1 & 1 & -1 & 1 \\ 2 & 1 & 8 & -7 \end{array}\right] \sim \left[\begin{array}{c|c|c} 1 & 0 & 9 & -8 \\ 0 & 1 & -10 & 9 \end{array}\right]$$

ce qui signifie que
$$9\overrightarrow{c}_1 - 10\overrightarrow{c}_2 = \overrightarrow{b}_1$$
 et $-8\overrightarrow{c}_1 + 9\overrightarrow{c}_2 = \overrightarrow{b}_2$.

Nous avons trouvé les coordonnées des vecteurs de la base ${\mathcal B}$ exprimés dans la base ${\mathcal C}$. Ainsi la matrice de changement de base

$$P = (Id)_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 9 & -8 \\ -10 & 9 \end{bmatrix} \text{ et donc } (Id)_{\mathcal{C}}^{\mathcal{B}} = P^{-1} = \begin{bmatrix} 9 & 8 \\ 10 & 9 \end{bmatrix}$$

4.7.3 Encore un exemple

On travaille dans l'espace vectoriel W des matrices symétriques de taille 2×2 (telles que $A = A^T$). Ainsi

$$W = \left\{ \left(egin{array}{cc} a & b \ b & c \end{array}
ight) \mid a,b,c \in \mathbb{R}
ight\}$$

On considère deux bases $\mathfrak{B}=(B_1,B_2,B_3)$ et $\mathfrak{C}=(C_1,C_2,C_3)$:

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

$$\mathcal{C} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right)$$

4.7.3 ENCORE UN EXEMPLE

4.7.4 Double Changement de Base

Soient \mathcal{B} , \mathcal{C} et \mathcal{D} trois bases de V.

$$(Id)^{\mathcal{D}}_{\mathfrak{C}}(Id)^{\mathfrak{C}}_{\mathfrak{B}} = (Id)^{\mathfrak{D}}_{\mathfrak{B}}$$

Preuve. La composition $(V, \mathcal{B}) \xrightarrow{ld} (V, \mathcal{C}) \xrightarrow{ld} (V, \mathcal{D})$ est

l'identité. La multiplication matricielle correspond à la composition.

Explicitement:

$$(Id)^{\mathcal{D}}_{\mathcal{C}}(Id)^{\mathcal{C}}_{\mathcal{B}}(x)_{\mathcal{B}} = (Id)^{\mathcal{D}}_{\mathcal{C}}(x)_{\mathcal{C}} = (x)_{\mathcal{D}}$$

REMARQUE

C'est donc un cas particulier de la formule de matrice d'une composition d'applications linéaires.

5.1.0 MOTIVATION

Soit $T: V \rightarrow V$ une application linéaire.

OBJECTIF

Trouver une base \mathcal{B} de V telle que $(T)^{\mathcal{B}}_{\mathcal{B}}$ soit facilement compréhensible.

Pour comprendre comment la matrice de T est modifiée lorsque la base change, les matrices de changement de base interviennent.

Exemple. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire donnée par

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y+z \\ -3x-2y+3z \\ -2x-2y+3z \end{pmatrix}$$

5.1.0 MOTIVATION, SUITE

Alors

$$A = (f)_{\text{Can}}^{\text{Can}} = \begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}$$

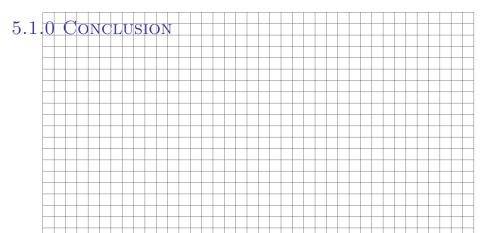
Mais qui donc est cette application f? On "se rend compte" que certains vecteurs sont fixés par f alors que d'autres sont renversés.

Autrement dit

- $\bullet \ \ \text{il existe des vecteurs} \ \overrightarrow{x} \in \mathbb{R}^3 \ \text{tels que} \ A\overrightarrow{x} = \overrightarrow{x} \ ;$
- ② il existe des vecteurs $\overrightarrow{x} \in \mathbb{R}^3$ tels que $A\overrightarrow{x} = -\overrightarrow{x}$.

5.1.0 MOTIVATION, SUITE

5.1.0 MOTIVATION, SUITE



La matrice de f dans la base nouvelle \mathcal{B} est diagonale!

- Elle est plus parlante géométriquement.
- Elle est plus facile à manipuler algébriquement, par exemple pour calculer ses puissances.

5.1.1 Valeurs propres et vecteurs propres

Soit A une matrice carrée de taille $n \times n$.

DÉFINITION

Un vecteur non nul \overrightarrow{x} de \mathbb{R}^n est un vecteur propre de A s'il existe un nombre λ tel que $A\overrightarrow{x}=\lambda\overrightarrow{x}$. On appelle alors λ une valeur propre de A. L'espace propre E_{λ} est formé de TOUS les vecteurs \overrightarrow{x} tels que $A\overrightarrow{x}=\lambda\overrightarrow{x}$.

Attention! Pour tout $\lambda \in \mathbb{R}$ on a $A\overrightarrow{0} = \lambda \overrightarrow{0}$. Il est crucial de demander que \overrightarrow{x} soit non nul! Une valeur propre est une denrée rare! Par contre $\overrightarrow{0} \in E_{\lambda}$.

DÉFINITION

Soit $T: V \to V$ une application linéaire. Un vecteur non nul $x \in V$ est un vecteur propre de T si $T(x) = \lambda x$.

5.1.2 Comparaison

Soit V un espace vectoriel et ${\mathcal B}$ une base. Soit $T:V\to V$ une application linéaire.

Soit $A = (T)^{\mathfrak{B}}_{\mathfrak{B}}$ la matrice de T dans la base \mathfrak{B} .

PROPOSITION

Un vecteur x est un vecteur propre de T pour la valeur propre λ si et seulement si $(x)_{\mathbb{B}}$ est un vecteur propre de A pour la même valeur propre λ .

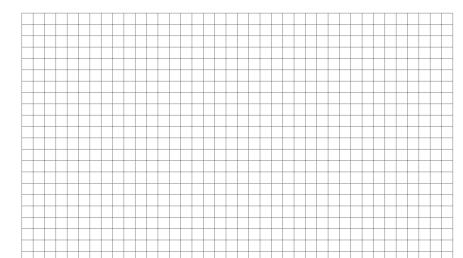
Preuve.
$$A(x)_{\mathcal{B}} = (T)_{\mathcal{B}}^{\mathcal{B}}(x)_{\mathcal{B}} = (T(x))_{\mathcal{B}}.$$

Ainsi
$$T(x) = \lambda x$$
 si et seulement si $A(x)_{\mathbb{B}} = \lambda(x)_{\mathbb{B}}$

5.1.2 Exemple

Soit $T: \mathbb{P}_1 \to \mathbb{P}_1$ l'application linéaire définie par

$$T(a+bt) = -a + 3b + (2a + 4b)t$$



5.1.1 EXEMPLE, SUITE

5.1.1 EXEMPLE, SUITE

5.1.3 Valeurs propres et noyaux

PROPOSITION

Un nombre λ est valeur propre de A si et seulement si le noyau de $A-\lambda I_n$ est non nul.

Preuve. Si λ est valeur propre de A, il existe un vecteur non nul \overrightarrow{x} tel que $A\overrightarrow{x}=\lambda\overrightarrow{x}$. Autrement dit

$$\overrightarrow{0} = A\overrightarrow{x} - \lambda \overrightarrow{x} = A\overrightarrow{x} - \lambda I_n \overrightarrow{x} = (A - \lambda I_n) \overrightarrow{x}$$

par distributivité de la multiplication matricielle. Ainsi un vecteur propre est une solution non nulle de l'équation homogène $(A-\lambda I_n)\overrightarrow{x}=\overrightarrow{0}$. En conclusion un vecteur propre existe pour λ si et seulement si $\operatorname{Ker}(A-\lambda I_n)$ est non nul.

5.1.3 Valeurs propres et noyaux

REMARQUE

Chercher une valeur propre λ de la matrice $A \in M_{n \times n}(\mathbb{R})$ revient à chercher un nombre λ tel que $\operatorname{Ker}(A - \lambda I_n)$ est de dimension ≥ 1 . Par le Théorème du rang, ceci revient à chercher λ avec $\operatorname{rang}(A - \lambda I_n) < n$, ou encore $A - \lambda I_n$ non inversible.

Exemple. La matrice de rotation
$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
.

5.1.3 EXEMPLE, SUITE