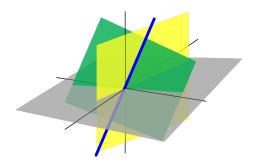
Algèbre Linéaire

Cours du 29 octobre

Jérôme Scherer



4.5.2 La dimension, rappel

THÉORÈME

Deux bases de V ont le même nombre d'éléments.

DÉFINITION

Soit V un espace vectoriel et $\mathcal{B}=(e_1,\ldots,e_n)$ une base. La dimension de V est n. On note $\dim V=n$.

- $\mathbf{0}$ dim $\mathbb{R}^n = n$
- $\mathbf{3} \dim M_{m \times n}(\mathbb{R}) = mn$

Exemple. La dimension de \mathbb{R} est 1. Il y a ici un seul sous-espace de dimension zéro, c'est $\{0\}$, et un seul sous-espace de dimension 1. c'est \mathbb{R} .

4.5.3 Compléments sur la dimension

DIMENSION ZÉRO

Un espace vectoriel V est de dimension nulle si et seulement si $V = \{0\}.$

En effet 0 est un vecteur linéairement dépendant, il ne peut donc faire partie d'aucune base! De plus notre convention était que $\operatorname{Vect}\{\emptyset\}=\{0\}$. Ainsi l'ensemble vide est une famille libre de générateurs de $\{0\}$.

PROPOSITION

Soit V un espace vectoriel de dimension n. Si W est un sous-espace de V, alors $\dim W \leq n$.

Preuve. Toute famille de plus de n vecteurs de V est liée.

4.5.4 La dimension et les sous-espaces de \mathbb{R}^3

II y a dans \mathbb{R}^3 :

- Un seul sous-espace de dimension zéro $\{\overrightarrow{0}\}$
- ② Une infinité de sous-espaces de dimension 1 : droites $\text{Vect}\{\overrightarrow{u}\}$ passant par l'origine
- ① Une infinité de sous-espaces de dimension 2 : plans $Vect\{\overrightarrow{u},\overrightarrow{v}\} \text{ passant par l'origine}$
- **1** Un seul sous-espace de dimension trois \mathbb{R}^3

Car trois vecteurs linéairement indépendants de \mathbb{R}^3 engendrent \mathbb{R}^3 .

4.5.5 Théorème de la base incomplète

On peut extraire une base d'une famille de générateurs et on peut compléter une famille libre en une base!

THÉORÈME

Soit V un espace vectoriel de dimension n et $\{e_1, \ldots, e_k\}$ une famille libre de vecteurs de V. Il existe alors des vecteurs e_{k+1}, \ldots, e_n tels que (e_1, \ldots, e_n) forme une base de V.

Preuve. Si (e_1, \ldots, e_k) forme déjà une base de V, on s'arrête là. Sinon il existe un vecteur e_{k+1} qui n'est pas dans $\mathrm{Vect}\{e_1, \ldots, e_k\}$. J'affirme que $\{e_1, \ldots, e_k, e_{k+1}\}$ est libre.

4.5.5 Fin de la preuve

J'affirme que $\{e_1, \ldots, e_k, e_{k+1}\}$ est libre.

- En effet si $\alpha_1 e_1 + \cdots + \alpha_k e_k + \alpha_{k+1} e_{k+1} = 0$, alors $\alpha_{k+1} = 0$ car e_{k+1} n'est pas combinaison linéaire des autres e_j par construction.
- Ainsi $\alpha_1 e_1 + \cdots + \alpha_k e_k = 0$.
- Comme la famille de départ est libre, tous les α_i sont nuls.

On peut donc ajouter e_{k+1} à la famille $\{e_1, \ldots, e_k\}$.

On continue ce processus inductif jusqu'à compter n vecteurs (e_1, \ldots, e_n) .

4.5.5 EXEMPLE.

4.5.6 Deux points du vue sur les bases

Soit V un espace vectoriel de dimension n.

CRITÈRES

- Une famille libre \mathcal{L} de n vecteurs forme une base de V.
- $oldsymbol{0}$ Une famille génératrice $\mathcal G$ de n vecteurs forme une base de V.

Preuve. On peut toujours compléter une famille libre en une base et extraire une base d'une famille génératrice.

Or, si on ajoute un vecteur à \mathcal{L} , elle devient liée; et si on enlève un vecteur de \mathcal{G} elle ne peut plus engendrer V puisque toute base est formée de n vecteurs.

4.5.6 Deux points du vue sur les bases

Soit V un espace vectoriel de dimension n. Une base est une famille ordonnée de générateurs libre de V. Nous avons vu que toute base est composée du même nombre n de vecteurs.

CRITÈRES

- Une famille libre \mathcal{L} de n vecteurs forme une base de V.
- $\textbf{ 0} \ \, \text{Une famille génératrice } \mathcal{G} \ \, \text{de } n \text{ vecteurs forme une base de } V.$

La raison en est que si on ajoute un vecteur à n vecteurs libres, la famille devient liée et si on enlève un vecteur de n générateurs, la famille n'engendre plus V.

Une base est donc une famille ordonnée libre *maximale* ou une famille de générateurs *minimale*.

4.5.7. Comment extraire une base

Soit $\mathcal{F}=\{f_1,\ldots,f_k\}$ une famille génératrice de V et $\mathcal{B}=(e_1,\ldots,e_n)$ une base de V. Pour extraire une base de \mathcal{F} :

- **①** Trouver les composantes des f_j dans la base \mathcal{B} .
- ② Ecrire la matrice F dont les colonnes sont les $(f_j)_{\mathbb{B}}$.
- Echelonner F.
- **1** Ne garder que les n colonnes pivots de F.

Exemple. Extraire de la famille

$$\{1-t, -1+t^2, t^2-t, 1+t, t^2+1\}$$
 une base de \mathbb{P}_2 .

4.5.7. EXTRACTION, EXEMPLE

4.5.7 COMMENT COMPLÉTER UNE BASE

Soit $\mathcal{F} = \{f_1, \dots, f_k\}$ une famille libre de V dont on a une base (e_1, \dots, e_n) . Pour compléter \mathcal{F} en une base :

- **①** Trouver les composantes des f_i dans la base \mathfrak{B} .
- **2** Ecrire la matrice F dont les lignes sont les $(f_j)_{\mathcal{B}}$.
- Echelonner F.
- Ajouter les vecteurs e_i pour les valeurs de i qui ne sont pas des colonnes pivot.

Exemple. Compléter la famille $\{\overrightarrow{e}_2 - \overrightarrow{e}_1, \overrightarrow{e}_3 - \overrightarrow{e}_1, \overrightarrow{e}_4 - \overrightarrow{e}_1\}$ en une base de \mathbb{R}^4 .

4.5.7. COMPLÉTION, EXEMPLE

4.5.7. COMPLÉTION, FIN

1.8 Applications linéaires : rappels

Soient V et W deux espaces vectoriels.

DÉFINITION

Une application $T: V \rightarrow W$ est linéaire si

- $T(u+v) = Tu + Tv \text{ pour tous } u, v \in V;$
- $T(\alpha v) = \alpha T v \text{ pour tous } v \in V \text{ et } \alpha \in \mathbb{R}.$

Exemples.

① Soit *A* une matrice $m \times n$. Alors $T : \mathbb{R}^n \to \mathbb{R}^m$ définie par

$$T\overrightarrow{x} = A\overrightarrow{x}$$

est linéaire

4.2.1 Linéarité : Plus d'exemples

② La dérivée $D: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$ des applications ∞ -dérivables est linéaire. Ici D(f) = f'.

En effet
$$(f+g)'=f'+g'$$
 et $(\alpha \cdot f)'=\alpha \cdot f'$.

3 La dérivée $D: \mathbb{P}_n \to \mathbb{P}_{n-1}$ est linéaire. Ici D(p) = p'. En particulier $D(t^k) = kt^{k-1}$.

On peut prendre cela comme définition et "étendre par linéarité", c'est-à-dire définir

$$D(a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0)$$
 comme

$$n \cdot a_n t^{n-1} + (n-1) \cdot a_{n-1} t^{n-2} + \cdots + a_1$$

Remarque : Comme D(1) = 0, la dérivation n'est pas injective.

4.2.1 Linéarité : Contre-exemple

L'application $C: \mathbb{P}_2 \to \mathbb{P}_4$ définie par

$$p\mapsto p^2$$

n'est pas linéaire. En effet on voit par exemple que

$$C(2t) = (2t)^2 = 4t^2 \neq 2t^2 = 2C(t)$$

Intuition

Souvent, les formules qui définissent une application linéaire sont données par des combinaisons linéaires de coefficients.

Exemple : Soit $A \in M_{n \times n}(\mathbb{R})$ et $1 \le i \le n$. Alors l'application $\mathbb{R}^n \to \mathbb{R}$ qui envoie \overrightarrow{x} sur $\det(A_i(\overrightarrow{x}))$ est linéaire.

4.2.2 LE NOYAU

Soit $T: V \rightarrow W$ une application linéaire.

DÉFINITION

Le noyau de T est le sous-ensemble $\operatorname{Ker} T = \{ v \in V \mid Tv = 0 \}.$

Etymologie. En allemand le mot "noyau" se dit "Kern".

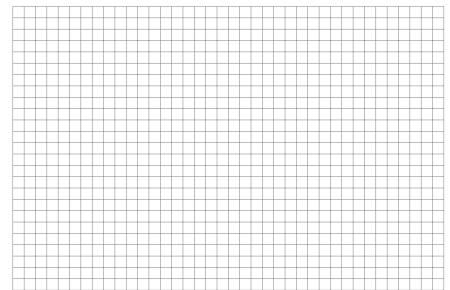
REMARQUE

Le concept de noyau généralise la notion de solution générale d'un système homogène.

En effet, si $T: \mathbb{R}^n \to \mathbb{R}^m$ est représentée par une matrice A de taille $m \times n$, le noyau de T est l'ensemble des vecteurs \overrightarrow{x} de \mathbb{R}^n tels que $A\overrightarrow{x} = \overrightarrow{0}$. On parle alors du noyau de A, noté $\operatorname{Ker} A$.

4.2.2 Exemple.

Soit $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ la projection orthogonale sur l'axe x = y.



4.2.3 LE NOYAU EST UN SOUS-ESPACE

Exemple. Soit $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$ l'application définie par

$$T\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{c} c \\ a - d \end{array}\right)$$

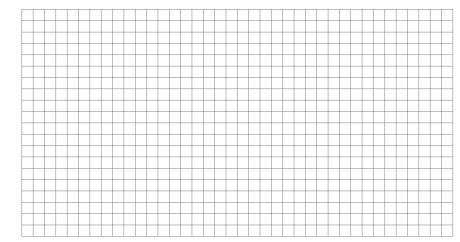
On vérifie que T est linéaire. Le noyau de T est un sous-ensemble de $M_{2\times 2}(\mathbb{R})$. Lequel ? C'est le sous-espace de $M_{2\times 2}(\mathbb{R})$

$$\operatorname{Ker} \mathcal{T} = \{ \left(egin{array}{cc} a & b \ 0 & a \end{array}
ight) \mid a,b \in \mathbb{R} \}$$

THÉORÈME

Soit $T:V \to W$ une application linéaire. Alors $\operatorname{Ker} T$ est un sous-espace de V.

4.2.3 Preuve.



CRITÈRE D'INJECTIVITÉ

Soit $T:V\to W$ une application linéaire. Alors T est inective si et seulement si $\operatorname{Ker} T=\{0\}.$

4.2.4 Calcul du noyau avec Gauss

REMARQUE

Lors du calcul d'un noyau on est souvent amené à résoudre un système d'équations homogène. La méthode de Gauss et la description de la solution générale sous forme paramétrique fournit alors un système de générateurs linéairement indépendants.

Exemple. On considère $T: \mathbb{R}^4 \to \mathbb{R}^2$ donnée par

$$T\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x - y + z - w \\ x - y - z + w \end{pmatrix}.$$

4.2.4 EXEMPLE.

4.2.5 L'IMAGE

DÉFINITION

L'image d'une application linéaire $T:V\to W$ est le sous-ensemble $\operatorname{Im} T=\{w\in W\,|\, \mathrm{il\ existe}\ v\in V\ \mathrm{tel\ que}\ Tv=w\}.$

REMARQUE

Le concept d'image généralise la notion du sous-espace ColA engendré par les colonnes d'une matrice A.

En effet, si $T: \mathbb{R}^n \to \mathbb{R}^m$ est représentée par une matrice A de taille $m \times n$, l'image de T est alors l'ensemble des combinaisons linéaires des colonnes de A puisque

$$\overrightarrow{Ax} = x_1 \overrightarrow{a}_1 + \cdots + x_n \overrightarrow{a}_n$$

On parle alors de l'image de A que l'on note Im A.

4.2.5 Exemple

Considérons un exemple du type de ceux que nous avons étudié dans le Chapitre 1.

Exemple. Soit $T: \mathbb{R}^3 \to \mathbb{R}^4$ l'application définie par

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-2b+c \\ -a-c \\ b+2a+2c \\ -b \end{pmatrix}$$

On voit que T est linéaire puisque T est représentée par une matrice.

Les colonnes de cette matrice sont les images des vecteurs de la base canonique.

4.2.5 Exemple, suite

$$A = \left(\begin{array}{rrr} 1 & -2 & 1 \\ -1 & 0 & -1 \\ 2 & 1 & 2 \\ 0 & -1 & 0 \end{array}\right)$$

Par conséquent l'image de T est un sous-ensemble de \mathbb{R}^4 . Lequel?

$$\operatorname{Im} \mathcal{T} = \operatorname{Vect} \left\{ \left(\begin{array}{c} 1 \\ -1 \\ 2 \\ 0 \end{array} \right), \left(\begin{array}{c} -2 \\ 0 \\ 1 \\ -1 \end{array} \right) \right\}$$

4.2.6 L'IMAGE EST UN SOUS-ESPACE

THÉORÈME

Soit $T:V\to W$ une application linéaire. Alors $\operatorname{Im} T$ est un sous-espace de W.

Remarque

Soit $T:V\to W$ une application linéaire. Alors $\operatorname{Ker} T$ est un sous-espace de V, mais $\operatorname{Im} T$ est un sous-espace de W.

Preuve. On voit d'abord que 0=T(0) appartient à l'image. Il reste à montrer la stabilité de la somme et de l'action. Traitons le cas de la somme. Soient donc w, w' deux vecteurs de $\operatorname{Im} T$. Nous devons montrer que w+w' aussi appartient à $\operatorname{Im} T$.

4.2.6 SUITE.

4.2.6 Exemple.

Soit $D \colon \mathbb{P}_3 o \mathbb{P}_3$ la dérivation, D(p) = p'.

MÉTHODE DE CALCUL

Soit $T: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire, représentée par une matrice $A \in M_{m \times n}(\mathbb{R})$.

- Pour calculer le noyau de T on échelonne et réduit la matrice A selon les lignes.
- Pour calculer l'image de T on ne garde que les colonnes-pivot.
 Si nécessaire on échelonne et réduit A selon les colonnes.

ESPACE-COLONNE

On appelle parfois espace-colonne le sous-espace ColA engendré par les colonnes de A. Il s'agit donc de ImA!

5.4.0. La matrice d'une application linéaire

- V est un espace vectoriel muni d'une base $\mathcal{B}=(e_1,\ldots,e_n)$,
- W est un espace vectoriel muni d'une base $\mathcal{C} = (f_1, \dots, f_m)$,
- $T: V \to W$ est une application linéaire.

DÉFINITION

La matrice A de T (pour ce choix de bases) est la matrice $(T)_{\mathcal{B}}^{\mathcal{C}}$ de taille $m \times n$ dont les colonnes sont $(Te_1)_{\mathcal{C}}, \ldots, (Te_n)_{\mathcal{C}}$.

SLOGAN

On place dans les colonnes de $(T)^{\mathcal{C}}_{\mathfrak{B}}$ les images des vecteurs de la base \mathfrak{B} exprimées en coordonnées dans la base \mathfrak{C} .

Proposition

$$(T)^{\mathfrak{C}}_{\mathfrak{B}}(v)_{\mathfrak{B}} = (Tv)_{\mathfrak{C}}.$$

5.4.0. Exemple.

Soit $D \colon \mathbb{P}_3 \to \mathbb{P}_3$ la dérivation, D(p) = p'.

