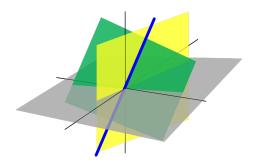
ALGÈBRE LINÉAIRE COURS DU 17 OCTOBRE

Jérôme Scherer



4.3.1 Parties libres et bases : rappels

Soit W un sous-espace vectoriel de V.

• Les vecteurs v_1, \ldots, v_k de W sont linéairement indépendants si la seule combinaison linéaire $\alpha_1 v_1 + \cdots + \alpha_k v_k$ qui donne le vecteur nul est la combinaison linéaire triviale : $\alpha_1 = \cdots = \alpha_k = 0.$

$$\alpha_1 = \cdots = \alpha_k = 0.$$

② On dit que l'ensemble $\{v_1, \ldots, v_k\}$ est une partie libre de W.

DÉFINITION

Une famille ordonnée de vecteurs $\mathcal{B} = (b_1, \dots, b_k)$ de W est une base de W si c'est une partie libre qui engendre W.

4.3.2 Bases canoniques

1 Le cas de \mathbb{R}^n . La base *canonique* est

$$\boxed{\mathbb{C}\textit{an} = (\overrightarrow{e}_1, \overrightarrow{e}_2, \dots, \overrightarrow{e}_n)}$$

C'est une base car nous avons vu que tout vecteur de \mathbb{R}^n s'écrit comme combinaison linéaire des \overrightarrow{e}_i .

② Le cas de \mathbb{P}_n . La base canonique est

$$\mathbb{C}$$
an = $(1, t, t^2, \dots, t^n)$

lci aussi tout vecteur de \mathbb{P}_n , i.e. tout polynôme de degré $\leq n$ s'écrit comme combinaison linéaire de ces monômes t^i , car un tel polynôme est de la forme $a_0 \cdot 1 + a_1 \cdot t + \cdots + a_n \cdot t^n$.

4.3.2 Bases canoniques, suite

(3) Le cas de $M_{m\times n}(\mathbb{R})$. La base canonique est

$$\boxed{ \texttt{Can} = (e_{11}, \ldots, e_{1n}, e_{21}, \ldots, e_{m1}, \ldots, e_{mn}) }$$

où e_{ij} est la matrice constituée de zéros, sauf le coefficients (i,j) qui vaut 1. Dans $M_{3\times 2}(\mathbb{R})$, la base canonique est donnée dans cet ordre :

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$e_{31} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, e_{33} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

4.3.3 Exemple

Soit W le plan dans \mathbb{R}^3 donné par l'équation x + y + z = 0.

L'inconnue x est principale, les inconnues y,z sont secondaires et seront nos paramètres.

Les vecteurs
$$\overrightarrow{b}_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
 et $\overrightarrow{b}_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$ forment une base $\mathcal{B} = (\overrightarrow{b}_1, \overrightarrow{b}_2)$ de W .

REMARQUE

Il n'y a pas de base canonique dans W. Nous avons fait des choix de paramètres!

EXEMPLE.

4.3.4 Théorème de la base extraite

Soit $\{v_1, \ldots, v_k\}$ une famille de vecteurs qui engendrent V.

THÉORÈME

- Si l'un des vecteurs v_i est combinaison linéaire des autres, alors la famille obtenue en supprimant v_i engendre encore V.
- Si $V \neq \{0\}$, il existe une sous-famille de $\{v_1, \dots, v_k\}$ qui forme une base de V.

Preuve. (A) Pour i = k. On suppose que

$$\mathbf{v}_{k} = \alpha_{1}\mathbf{v}_{1} + \dots + \alpha_{k-1}\mathbf{v}_{k-1}$$

Puisque la famille $\{v_1, \ldots, v_k\}$ engendre V, tout vecteur $v \in V$ est une combinaison linéaire des v_i .

PREUVE, SUITE

$$v = \beta_1 v_1 + \dots + \beta_{k-1} v_{k-1} + \beta_k v_k$$

= $\beta_1 v_1 + \dots + \beta_{k-1} v_{k-1} + \beta_k (\alpha_1 v_1 + \dots + \alpha_{k-1} v_{k-1})$
= $(\beta_1 + \beta_k \alpha_1) v_1 + \dots + (\beta_{k-1} + \beta_k \alpha_{k-1}) v_{k-1}$

Nous avons montré que v est combinaison linéaire de v_1, \ldots, v_{k-1} . (B) Si la famille est libre on arrête tout! Sinon la partie (A) permet d'enlever un générateur v_i et on continue inductivement jusqu'à ce que la famille soit libre. Le processus s'arrête puisque le nombre de vecteurs au départ est fini.

4.4.1 Combinaisons linéaires d'une base

Soit V un espace vectoriel et $\mathcal{B} = (e_1, \dots, e_n)$ une base.

THÉORÈME

Tout vecteur x de V s'écrit de manière unique comme combinaison linéaire $x=x_1e_1+\cdots+x_ne_n$, pour des nombres réels x_1,\ldots,x_n .

Existence. Une base est un système de générateurs!

Unicité. Si $x_1e_1 + \cdots + x_ne_n = x = y_1e_1 + \cdots + y_ne_n$, alors

$$(x_1 - y_1)e_1 + \cdots + (x_n - y_n)e_n = 0$$

Une base est libre! Ainsi $x_1 = y_1, \dots, x_n = y_n$.

Remarque. C'est l'argument fait en 1.9.1, cours 6.

4.4.2 COORDONNÉES

DÉFINITION

Les composantes ou coordonnées d'un vecteur x dans la base \mathcal{B} sont les coefficients réels x_1, \ldots, x_n tels que

$$x = x_1e_1 + \cdots + x_ne_n$$

On se représente alors
$$x$$
 comme un vecteur de \mathbb{R}^n : $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

NOTATION STANDARD

Dans la base canonique Can de \mathbb{R}^n on retrouve la notation vectorielle standard : $(\overrightarrow{x})_{\mathcal{C}an} = \overrightarrow{x}$.

4.4.2 Exemple

Dans
$$\mathbb{R}^2$$
 un vecteur $\overrightarrow{x} = \begin{pmatrix} a \\ b \end{pmatrix}$ n'est autre que $a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

L'écriture vectorielle était celle des coordonnées dans $\mathcal{C}an$.

Une base
$$\mathcal{B}$$
 de \mathbb{R}^2 est formée de $\overrightarrow{b}_1=\begin{pmatrix}1\\1\end{pmatrix}$ et $\overrightarrow{b}_2=\begin{pmatrix}1\\-1\end{pmatrix}$.

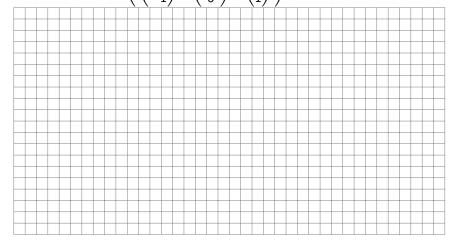
Dans la base
$$\mathcal{B}$$
 le vecteur $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ représente $\overrightarrow{u} = 2\overrightarrow{b}_1 - \overrightarrow{b}_2$.

Exprimé dans la base canonique il s'agit de

$$2\begin{pmatrix}1\\1\end{pmatrix}-\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}1\\3\end{pmatrix}=(\overrightarrow{u})_{\mathcal{C}an}$$

4.4.2 Exemples.

$$\text{J'affirme que } \mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right) \text{ est une base de } \mathbb{R}^3.$$



4.4.2. SUITE

4.4.2. FIN

4.4.3 Comparaison avec \mathbb{R}^n

DÉFINITION

Une application linéaire bijective est appelée isomorphisme.

Un isomorphisme permet d'identifier la source et le but de cette application linéaire $T:V\to W$. Les éléments de V et W se correspondent parfaitement, et les opérations de somme et d'action aussi !

THÉORÈME

Soit V un espace vectoriel et \mathcal{B} une base de n vecteurs.

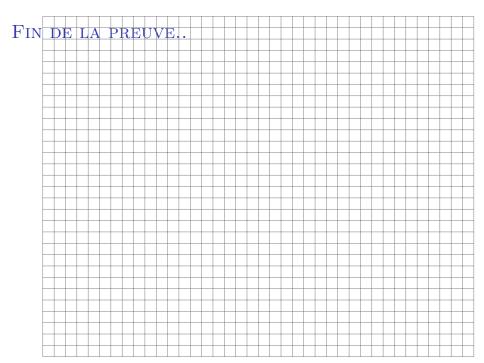
L'application $T:V\to\mathbb{R}^n$ définie par $T(x)=(x)_{\mathbb{B}}$ est un isomorphisme.

4.4.3 Démonstration

Nous devons prouver quatre points, les deux premiers pour montrer que T est linéaire, les deux autres pour établir l'injectivité, et enfin la surjectivité.

- $T(\lambda v) = \lambda T(v)$ pour tout $\lambda \in \mathbb{R}$ et tout $v \in V$;
- $T(v+w) = T(v) + T(w) \text{ pour tous } v, w \in V;$
- $T(v) = \overrightarrow{0} \Longrightarrow v = 0$; (critère d'injectivité)

Soient donc $\lambda \in \mathbb{R}$ et $v, w \in V$ que nous écrivons - de manière unique! - comme $v = x_1e_1 + \cdots + x_ne_n$ et $w = y_1e_1 + \cdots + y_ne_n$.



4.4.3 Exemples

• $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^4$ est un isomorphisme. Pour la base canonique $\mathfrak{C}an = (e_{11}, e_{12}, e_{21}, e_{22})$, on a

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix}_{\mathfrak{C}an} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

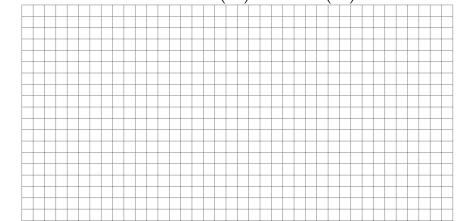
② $T: \mathbb{P}_3 \to \mathbb{R}^4$ est un isomorphisme. Pour la base canonique $\mathfrak{C}\mathit{an} = (1,t,t^2,t^3)$ on a

$$T(a+bt+ct^2+dt^3) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

4.4.3 Exemple 3.

Soit W le plan dans \mathbb{R}^3 donné par l'équation x+y+z=0 et $\mathbb B$ la

base formée des vecteurs
$$\overrightarrow{b}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 et $\overrightarrow{b}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.



4.4.4 Bases et coordonnées

Considérons les polynômes

$$p(t)=1+t^2, q(t)=1-t^2, r(t)=1-2t+t^2\in \mathbb{P}_2$$
 On les écrit en coordonnées dans la base canonique :

$$(p)_{\mathbb{C}an} = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \quad (q)_{\mathbb{C}an} = egin{pmatrix} 1 \ 0 \ -1 \end{pmatrix} \quad (r)_{\mathbb{C}an} = egin{pmatrix} 1 \ -2 \ 1 \end{pmatrix}$$

PIVOTS

La famille (p, q, r) est une base de \mathbb{P}^2 si et seulement si la matrice

carrée
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$
 a trois pivots.

4.4.4 SUITE.

4.5.1 Cardinalité d'une base

Généralisons. Soit

- V un espace vectoriel,
- ② $\mathcal{B} = (b_1, \ldots, b_n)$ une base de V,

THÉORÈME

La famille ordonnée $\mathcal C$ est une base de V si et seulement si la matrice $A=((c_1)_{\mathbb B},\ldots,(c_m)_{\mathbb B})$ a un pivot dans chaque ligne et chaque colonne.

REMARQUE

En particulier A est une matrice carrée (m = n) et inversible.

4.5.1 Cardinalité d'une base

Preuve. Soit V un espace vectoriel et $\mathcal{B}=(e_1,\ldots,e_n)$ une base. On a donc un isomorphisme $T:V\to\mathbb{R}^n$ où $T(v)=(v)_{\mathcal{B}}$.

- On aimerait savoir quand C est une famille libre;

Famille libre. Il s'agit de comprendre quelles combinaisons linéaires $\alpha_1c_1+\cdots+\alpha_mc_m$ donnent le vecteur nul. Or, comme T est injective, cette expression est nulle si et seulement si son image par T est nulle. De plus

$$\overrightarrow{0} = T(0) = T(\alpha_1 c_1 + \dots + \alpha_m c_m) = \alpha_1 T(c_1) + \dots + \alpha_m T(c_m)$$

Ce système (écrit sous forme vectorielle) a une solution unique quand $A = (T(c_1), \dots, T(c_m))$ a un pivot dans chaque colonne.

4.5.1 Cardinalité d'une base

Famille génératrice. Il s'agit de comprendre si tout vecteur de V peut s'écrire comme combinaison linéaire $\alpha_1c_1+\cdots+\alpha_mc_m$. Or, comme T est surjective, tout vecteur \overrightarrow{b} de \mathbb{R}^n est de la forme T(v) pour un vecteur $v \in V$.

Ainsi on se demande quand le système (écrit sous forme vectorielle)

$$\alpha_1 T(c_1) + \cdots + \alpha_m T(c_m) = \overrightarrow{b}$$

a une solution pour tout \overrightarrow{b} , par linéarité de T comme ci-dessus.

En effet si $T(\alpha_1c_1 + \cdots + \alpha_mc_m) = T(v)$, alors

$$\alpha_1 c_1 + \cdots + \alpha_m c_m = v$$
 par injectivité de T .

Ce système a une solution unique quand $A = (T(c_1), ..., T(c_m))$ a un pivot dans chaque ligne.

4.5.2 LA DIMENSION

THÉORÈME

Deux bases de V ont le même nombre d'éléments.

COROLLAIRE

Si V admet une base de n vecteurs, alors une famille $\{v_1, \ldots, v_k\}$ de vecteurs de V avec k > n est liée.

DÉFINITION

Soit V un espace vectoriel et $\mathcal{B}=(e_1,\ldots,e_n)$ une base. La dimension de V est n. On note $\dim V=n$.

- $\mathbf{0}$ dim $\mathbb{R}^n = n$
- $\mathbf{3}$ dim $M_{m\times n}(\mathbb{R})=mn$

4.5.2 PLUS D'EXEMPLES.

4.5.3 Compléments sur la dimension

DIMENSION ZÉRO

Un espace vectoriel V est de dimension nulle si et seulement si $V = \{0\}.$

En effet 0 est un vecteur linéairement dépendant, il ne peut donc faire partie d'aucune base! De plus notre convention était que $\operatorname{Vect}\{\emptyset\} = \{0\}$. Ainsi l'ensemble vide est une famille libre de générateurs de $\{0\}$.

PROPOSITION

Soit V un espace vectoriel de dimension n. Si W est un sous-espace de V, alors $\dim W \leq n$.

Preuve. Toute famille de plus de *n* vecteurs de *V* est liée.

4.5.4 La dimension et les sous-espaces de \mathbb{R}^3

II y a dans \mathbb{R}^3 :

- Un seul sous-espace de dimension zéro $\{\overrightarrow{0}\}$
- ② Une infinité de sous-espaces de dimension 1 : droites $\text{Vect}\{\overrightarrow{u}\}$ passant par l'origine
- ① Une infinité de sous-espaces de dimension 2 : plans $Vect\{\overrightarrow{u},\overrightarrow{v}\} \text{ passant par l'origine}$
- **1** Un seul sous-espace de dimension trois \mathbb{R}^3

Car trois vecteurs linéairement indépendants de \mathbb{R}^3 engendrent \mathbb{R}^3 .

4.5.5 Théorème de la base incomplète

On peut extraire une base d'une famille de générateurs et on peut compléter une famille libre en une base!

THÉORÈME

Soit V un espace vectoriel de dimension n et $\{e_1, \ldots, e_k\}$ une famille libre de vecteurs de V. Il existe alors des vecteurs e_{k+1}, \ldots, e_n tels que (e_1, \ldots, e_n) forme une base de V.

Preuve. Si (e_1, \ldots, e_k) forme déjà une base de V, on s'arrête là. Sinon il existe un vecteur e_{k+1} qui n'est pas dans $\mathrm{Vect}\{e_1, \ldots, e_k\}$. J'affirme que $\{e_1, \ldots, e_k, e_{k+1}\}$ est libre.

4.5.5 FIN DE LA PREUVE

J'affirme que $\{e_1, \ldots, e_k, e_{k+1}\}$ est libre.

- En effet si $\alpha_1 e_1 + \cdots + \alpha_k e_k + \alpha_{k+1} e_{k+1} = 0$, alors $\alpha_{k+1} = 0$ car e_{k+1} n'est pas combinaison linéaire des autres e_j par construction.
- Ainsi $\alpha_1 e_1 + \cdots + \alpha_k e_k = 0$.
- Comme la famille de départ est libre, tous les α_i sont nuls.

On peut donc ajouter e_{k+1} à la famille $\{e_1, \ldots, e_k\}$.

On continue ce processus inductif jusqu'à compter n vecteurs (e_1, \ldots, e_n) .

4.5.5 EXEMPLE.

4.5.6 Deux points du vue sur les bases

Soit V un espace vectoriel de dimension n.

CRITÈRES

- Une famille libre \mathcal{L} de n vecteurs forme une base de V.
- $oldsymbol{0}$ Une famille génératrice $\mathcal G$ de n vecteurs forme une base de V.

Preuve. On peut toujours compléter une famille libre en une base et extraire une base d'une famille génératrice.

Or, si on ajoute un vecteur à \mathcal{L} , elle devient liée; et si on enlève un vecteur de \mathcal{G} elle ne peut plus engendrer V puisque toute base est formée de n vecteurs.