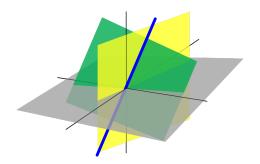
Algèbre Linéaire

Gauss Reboot

Jérôme Scherer



RÉSOLUTION D'UN SYSTÈME

Supposons que nous ayons échelonné et réduit une matrice A pour résoudre le système homogène $A\overrightarrow{x}=\overrightarrow{0}$ (c'est-à-dire le calcul du noyau de A). On a donc obtenu, par une suite d'opérations élémentaires sur les lignes de A, une matrice B échelonnée et réduite. On rappelle que $\mathrm{Ker} A = \mathrm{Ker} B$.

Disons
$$B = \begin{pmatrix} 1 & -3 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}$$
.

Cette matrice a trois pivots, dans les colonnes 1, 3 et 5. Il y a donc trois inconnues secondaires, dans les colonnes 2, 4 et 6, qui joueront le rôle de paramètre dans la description du noyau.

FORMER UNE BASE DU NOYAU

Pour former une base du noyau, on procède comme suit, l'exemple et les explications suivent.

- on prépare autant de vecteurs que d'inconnues libres (ici 3);
- on place dans les coordonnées correspondant aux inconnues libres un seul 1 et des zéros, les 1 apparaissent par ordre croissant;
- on remplit les coordonnées correspondant aux inconnues principales avec les opposés des entrées des colonnes de la matrice B qui ne sont pas pivot.

EXEMPLE

On prépare la base
$$\mathcal{B}=\left\{ \begin{array}{c} 1\\1\\?\\0\\?\\0 \end{array} \right., \left(\begin{array}{c} 1\\0\\?\\1\\?\\0 \end{array} \right), \left(\begin{array}{c} 1\\0\\?\\0\\?\\1 \end{array} \right)$$

$$\begin{pmatrix}
0 \\
? \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
? \\
0
\end{pmatrix}
\begin{pmatrix}
0 \\
? \\
1
\end{pmatrix}$$
On complète $\mathcal{B} = \begin{cases}
\begin{pmatrix}
3 \\
1 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
-1 \\
0 \\
-1 \\
1 \\
0 \\
-4 \\
1
\end{pmatrix}$

Manipulation du système

Chaque ligne de *B* correspond à une équation, on exprime chaque inconnue principale en fonction des inconnues libres.

$$\begin{cases} x_1 & -3x_2 & +x_4 & -2x_6 & = 0 \\ & x_3 & +x_4 & -x_6 & = 0 \\ & & x_5 & +4x_6 & = 0 \end{cases}$$

Les inconnues libres changent de signe en passant le l'autre côté de l'égalité.

$$\begin{cases} x_1 = 3x_2 - x_4 + 2x_6 \\ x_3 = -x_4 + x_6 \\ x_5 = -4x_6 \end{cases}$$

EXPRESSION DE LA SOLUTION GÉNÉRALE

Ainsi un vecteur $\overrightarrow{x} \in \mathbb{R}^6$ est solution du système si et seulement si

$$\overrightarrow{x} = \begin{pmatrix} 3x_2 - x_4 + 2x_6 \\ x_2 \\ -x_4 + x_6 \\ x_4 \\ -4x_6 \\ x_6 \end{pmatrix} = \begin{pmatrix} 3x_2 \\ x_2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -x_4 \\ 0 \\ -x_4 \\ x_4 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2x_6 \\ 0 \\ x_6 \\ 0 \\ -4x_6 \\ x_6 \end{pmatrix}$$

où on a utilisé la définition de la somme de vecteurs pour séparer les éléments qui font intervenir chacune des inconnues libres.

La base du noyau pour terminer

Par définition de l'action tout élément du noyau s'exprime donc comme combinaison linéaire

$$\overrightarrow{x} = x_2 \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_6 \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \\ -4 \\ 1 \end{pmatrix}$$

Ces trois vecteurs sont linéairement indépendants (calcul immédiat grâce aux pivots!) si bien qu'ils forment une base du noyau.