Durée : 180 minutes

Algèbre linéaire Examen Partie commune Automne 2020

Enoncé

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- -1 point si la réponse est incorrecte.

Pour les questions de type **vrai-faux**, on comptera :

- +1 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- -1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2020.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x} \in \mathbb{R}^{n}$, x_{i} désigne la *i*-ème coordonnée de \vec{x} .
- I_m désigne la matrice identité de taille $m{\times}m.$
- $\, \mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathbb{R}^{m\times n}$ désigne l'espace vectoriel des matrices de taille $m\times n$ à coefficients réels.
- Pour $\vec{x}, \vec{y} \in \mathbb{R}^n$, le produit scalaire canonique est défini par $\vec{x} \cdot \vec{y} = x_1 y_1 + \ldots + x_n y_n$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 : Soit A une matrice symétrique telle que

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \qquad \text{et} \qquad \vec{v}_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

sont des vecteurs propres de A associés, respectivement, aux valeurs propres 1, 0 et 2. Alors

Question 2: Soit

$$A = \left[\begin{array}{rrrr} 1 & 0 & -1 & 4 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & -1 & 0 \\ -3 & 0 & 0 & -1 \end{array} \right].$$

Alors la dimension de l'espace propre de A associé à la valeur propre $\lambda=1$ est égale à

$$\square$$
 0. \square 1. \square 2. \square 3

Question 3: L'inverse $B = A^{-1}$ de la matrice

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 4 & 0 & -1 \end{bmatrix}$$

est tel que

Question 4 : Le polynôme caractéristique de la matrice

$$\left[\begin{array}{ccc}
1 & 0 & -1 \\
4 & 1 & 2 \\
0 & 1 & 3
\end{array} \right]$$

est

Question 5 : Si on calcule la décomposition LU de

$$A = \left[\begin{array}{rrrr} 1 & 2 & 0 & 1 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 4 \\ 1 & 0 & 3 & 2 \end{array} \right]$$

(en utilisant **seulement** les opérations élémentaires sur les lignes consistant à ajouter un multiple d'une ligne à une autre ligne **en dessous**), alors la matrice L obtenue est telle que

Question 6 : Soient α un paramètre réel et A la matrice

$$A = \left[\begin{array}{ccc} 1 & 1 & -2 \\ 1 & 3 & -4 \\ 3 & 4 & \alpha \end{array} \right].$$

Pour quelle valeur de α est-ce qu'on a rang(A) < 3?

Question 7 : On considère \mathbb{R}^3 muni du produit scalaire canonique. Soit \mathcal{B} une base de \mathbb{R}^3 définie par les vecteurs

$$\vec{u}_1 = \left[egin{array}{c} 0 \\ 1 \\ 1 \end{array}
ight], \quad \vec{u}_2 = \left[egin{array}{c} 1 \\ 2 \\ 0 \end{array}
ight] \quad et \quad \vec{u}_3 = \left[egin{array}{c} -1 \\ 1 \\ -1 \end{array}
ight].$$

Alors une base orthogonale, obtenue en appliquant l'algorithme de Gram-Schmidt à \mathcal{B} sans changer l'ordre, est donnée par les vecteurs

$$\square \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}. \qquad \square \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}.$$

$$\square \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -4/3 \\ 2/3 \\ -2/3 \end{bmatrix}. \qquad \square \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}, \begin{bmatrix} -1/\sqrt{3} \\ 1/\sqrt{3} \\ -1/\sqrt{3} \end{bmatrix}.$$

Question 8: On reprend les données de la question précédente. La projection orthogonale du vecteur $\begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$ sur le sous-espace vectoriel engendré par les vecteurs \vec{u}_1, \vec{u}_2 est le vecteur $\begin{bmatrix}
 7/3 \\
 -7/6 \\
 7/6
 \end{bmatrix}
 \begin{bmatrix}
 5/3 \\
 19/6 \\
 -1/6
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 3 \\
 -1
 \end{bmatrix}
 \begin{bmatrix}
 5 \\
 8 \\
 -2
 \end{bmatrix}$ Question 9: Soient $A = \begin{bmatrix} 1 & 1 \\ -2 & 1 \\ -1 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \text{et} \qquad \widehat{x} = \begin{bmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{bmatrix}.$ Si \hat{x} est une solution au sens des moindres carrés du système $A\vec{x}=\vec{b},$ alors $\hat{x}_2 = 8/7.$ $\hat{x}_2 = -2/7.$ $\hat{x}_2 = 3.$ $\hat{x}_2 = 6/7.$ Question 10: Soient $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix} \quad \text{et} \quad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$ Une solution $\vec{x} \in \mathbb{R}^3$ du système $A\vec{x} = \vec{b}$ a pour deuxième coordonnée $x_2 = 10.$ $x_2 = 1$. $x_2 = -3$. Question 11 : On se donne les bases ordonnées de \mathbb{R}^2 et \mathbb{P}_2 suivantes $\mathcal{B} = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$ et $\mathcal{D} = (1, t + t^2, t - t^2).$ Soit $T:\mathbb{R}^2 \to \mathbb{P}_2$ l'application linéaire définie par $T(\vec{x}) = x_1 t + x_2 t^2$ pour tout $\vec{x} \in \mathbb{R}^2$. Alors la matrice associée à T par rapport aux bases \mathcal{B} et \mathcal{D} est

Question 12:

Le produit C = AB des matrices

$$A = \begin{bmatrix} 1 & 0 & 1 & 4 \\ 2 & 3 & 1 & 8 \\ 1 & 0 & 3 & 5 \\ 4 & 1 & -3 & -2 \\ -2 & 1 & 0 & 3 \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} 0 & 1 & -2 & 4 & 5 \\ 1 & 0 & 7 & -2 & 7 \\ 3 & 1 & 1 & 3 & 0 \\ 4 & -5 & 9 & 1 & 1 \end{bmatrix}$$

est tel que

Question 13: La droite qui approxime le mieux au sens des moindres carrés les points (1,2),(-1,5),(0,3) est

$$y = \frac{10}{3} - \frac{3}{2} x.$$

$$y = \frac{3}{2} + \frac{10}{3} x.$$

$$y = -\frac{10}{3} - \frac{3}{2}x.$$

$$y = \frac{10}{3} - \frac{14}{9} x.$$

Question 14 : Soit \mathcal{B} la base ordonnée de \mathbb{P}_2 donnée par $\mathcal{B} = \left(-1 + t, 2t - t^2, 2 - t + 3t^2\right)$ et soit $p \in \mathbb{P}_2$ défini par $p(t) = t - 8t^2$. La troisième coordonnée de p par rapport à la base \mathcal{B} est

$$-15/7.$$

$$-11/7.$$

Question 15:

$$A = \left[\begin{array}{cccc} 1 & 4 & 9 & -2 \\ 3 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 1 & -1 & 0 \end{array} \right].$$

Alors

Question 16: Soient les vecteurs de \mathbb{R}^4

$$\vec{a}_1 = \left[egin{array}{c} 1 \\ 2 \\ 2 \\ 0 \end{array}
ight], \qquad \vec{a}_2 = \left[egin{array}{c} 2 \\ 1 \\ 4 \\ 4 \end{array}
ight] \qquad \mathrm{et} \qquad \vec{b} = \left[egin{array}{c} h \\ 2 \\ 2h \\ -2 \end{array}
ight].$$

Pour quelle valeur de $h \in \mathbb{R}$ le vecteur \vec{b} est-il dans Vect $\{\vec{a}_1, \vec{a}_2\}$?

$$h = 1/8$$
.

$$h = -2$$
.

$$h=1$$

Question 17: Soient $\mathcal{B}=\left(1+3t,2+t^2,4+t+3t^2\right)$ et $\mathcal{C}=\left(1,t,t^2\right)$ deux bases ordonnées de \mathbb{P}_2 . Si la matrice P représente la matrice de changement de base telle que $[q]_{\mathcal{C}}=P[q]_{\mathcal{B}}$ pour tout $q\in\mathbb{P}_2$, alors							
	$ p_{12} = 3.$						
Question 18 : Soit R la forme échelonnée réduite de la matrice							
	$\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 3 & -4 \\ 3 & -1 \\ 1 & -2 \end{bmatrix}$.					
Alors, on a							
	$r_{24} = 19/12. $						
Question 19: La matrice $ \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 0 \end{bmatrix} $							
est inversible et son inverse est diagonalisable en base orthonormée. est inversible et son inverse n'est pas diagonalisable en base orthonormée. n'est pas diagonalisable en base orthonormée. n'est pas inversible.							
Question 20 : Soient k et ℓ des paramètres réels et							
	$A = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	$\left[egin{array}{cccc} 1 & k & 0 \ 5 & 2 & 1 \ 0 & \ell & 1 \end{array} ight].$					
Alors $\lambda=6$ est une valeur propre de A lorsque							

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

Question 21 : Si chaque ligne d'une matrice A est orthogonale à tous les vecteurs de Ker(A), alors la matrice A est symétrique.

VRAI FAUX

Question 22: L'ensemble

$$\left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array}\right] \in \mathbb{R}^{2 \times 2} \text{ tel que } a,b,c \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $\mathbb{R}^{2\times 2}$.

VRAI FAUX

Question 23: Soient

$$\vec{v} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}$$
 et $A = \begin{bmatrix} 4 & 1 & 2 & 1\\1 & -3 & 1 & 2\\0 & 2 & 0 & -3 \end{bmatrix}$.

Alors le vecteur \vec{v} est dans l'image de l'application linéaire $T: \mathbb{R}^4 \to \mathbb{R}^3$ définie par $T(\vec{x}) = A\vec{x}$.

VRAI FAUX

Question 24: Soit

$$A = \left[\begin{array}{ccc} 5 & 1 & -2 \\ 3 & -2 & 1 \\ 2 & 3 & -3 \end{array} \right].$$

Le vecteur $\begin{bmatrix} 3\\11\\-1 \end{bmatrix}$ est dans Ker(A).

VRAI FAUX

Question 25 : Soit A la matrice de la question précédente. Le vecteur $\begin{bmatrix} 6 \\ 1 \\ 5 \end{bmatrix}$ est dans Im(A), le sous-espace vectoriel engendré par les colonnes de A.

☐ VRAI ☐ FAUX

Question 26 : Le système lin	néaire		
	$\begin{cases} 2x & -4x \\ y + x \\ 3x + 5y + 8x \\ 2x + y - 3x \end{cases}$	z + 2t = -10 z = 2 z - t = -6 z + 2t = 1	
possède au moins une solution.			
	☐ VRAI	☐ FAUX	
Question 27: Si une matrice	e A est inversible,	alors $A^T A$ est aussi inversible.	
	☐ VRAI	FAUX	
Question 28 : Soit A une ma -1, 1 et 2. Alors le déterminan	_		aleurs propres sont
	☐ VRAI	☐ FAUX	
Question 29 : Si, comme coefficients réels dont les valeu déterminant de A^{-1} est égal à	rs propres sont —		
	☐ VRAI	FAUX	
Question 30: Soit A une ma $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^n$ sont des vecteurs α, α et β , où $\alpha, \beta \in \mathbb{R}$ et $\alpha \neq \beta$	propres de A dont	les valeurs propres associées s	ont respectivement
	☐ VRAI	FAUX	
Question 31: Soient $\vec{u}, \vec{v}, \vec{v}$ orthogonal à \vec{w} , alors \vec{u} est orth		eurs non-nuls. Si $ec{u}$ est ortho	gonal à $ec{v}$ et $ec{v}$ est
	☐ VRAI	☐ FAUX	
Question 32 : Soit A une ma	atrice de taille 8×!	5 telle que $\dim(\operatorname{Ker}(A)) = 2$	Alors la dimension

du sous-espace vectoriel engendré par les lignes de A est égale à 3.

VRAI

FAUX

Question 33: Soit A une matrice de taille $m \times (m+1)$ à coefficients réels et telle que $\mathrm{Im}(A) = \mathbb{R}^m$. Soient $\vec{x}, \vec{y} \in \mathbb{R}^{m+1}$ tels que $\vec{x} \neq \vec{y}$ et $A\vec{x} = A\vec{y}$ et soit $\vec{z} = \vec{x} - \vec{y}$. Alors $\{\vec{z}\}$ est une base de $\mathrm{Ker}(A)$. Question 34: Les vecteurs de \mathbb{R}^3 suivants

$$\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

sont linéairement indépendants.

VRAI FAUX

Question 35 : Soient A une matrice de taille $m \times n$ et B une matrice de taille $n \times m$ telles que BA soit inversible. Alors le rang de A est égal à n.

VRAI FAUX

Question 36: Sachant que

$$B = \begin{bmatrix} 1 & 0 & 0 & 47/11 \\ 0 & 1 & 0 & -49/22 \\ 0 & 0 & 1 & 3/11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

est la forme échelonnée réduite de la matrice

$$A = \left[\begin{array}{rrrr} 1 & 2 & -3 & -1 \\ 2 & 4 & 5 & 1 \\ 3 & 6 & 2 & 0 \\ -1 & 0 & 1 & -4 \end{array} \right],$$

alors une base du sous-espace vectoriel engendré par les lignes de A est donnée par les vecteurs

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 47/11 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -49/22 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3/11 \end{bmatrix}.$$

VRAI FAUX

Question 37: La matrice				
		$\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{cccc} 2 & 0 \\ 4 & -12 \\ 0 & 5 \end{array} $	
est diagonalisable.				
		VRAI		FAUX
Question 38: Soit S un sous-enalors S est une base de V .	$_{ m nsem}$	ble de l'es	space vect	toriel V . Si dim $V = n$ et si S engendre V ,
		VRAI		FAUX
				on 2, W un espace vectoriel de dimension 5 dimension de $\operatorname{Im}(T)$ est égale à 2.
		VRAI		FAUX
Question 40 : Si A est une ma ou égale à 2.	itrice	de taille	6×4 , alor	es la dimension de $\operatorname{Ker}(A)$ est plus grande
		VRAI		FAUX