Exercices — Série 14

Mots-clés: décomposition en valeur singulières, chaînes de Markov discrètes.

Question 1

Pour les matrices ci-dessous déterminer

$$\max\{||Ax|| \mid ||x|| = 1\} \text{ et } \min\{||Ax|| \mid ||x|| = 1\}.$$

a)
$$A = \begin{pmatrix} -5 & 0 \\ 0 & 18 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{pmatrix}$, c) $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$.

Question 2 Trouver une décomposition en valeurs singulières des matrices

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Question 3 Trouver une décomposition en valeurs singulières des matrices suivantes.

i)
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$$
, ii) $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$.

Question 4 Soit A une matrice de taille $n \times n$.

- i) Montrer que A est inversible si et seulement si A possède n valeurs singulières non nulles.
- ii) Si A est inversible et $U\Sigma V^T$ est une décomposition en valeurs singulières de A, donner une décomposition en valeurs singulières de A^{-1} .

-	uestion 5 Indiquer pour chaque énoncé s'il est vrai ou faux et justifier ièvement votre réponse.
a)	Si A est une matrice de taille $n \times n$ telle que 0 est l'unique valeur propre de A , alors $A = 0$.
	VRAI FAUX
b)	Si A est une matrice symétrique de taille $n \times n$ telle que 0 est l'unique valeur propre de A , alors $A=0$.
	☐ VRAI ☐ FAUX
c)	La matrice d'une forme quadratique est symétrique.
	□ VRAI □ FAUX
d)	Une forme quadratique définie positive satisfait $Q(x) > 0, \forall x \in \mathbb{R}^n$.
	☐ VRAI ☐ FAUX
e)	Si les valeurs propres d'une matrice symétrique A sont toutes strictement positives, alors la forme quadratique x^TAx est définie positive.
	VRAI FAUX
f)	Si les coefficients de A (symétrique) sont tous ≥ 0 alors $q(x) = x^T A x$ est
	définie positive. URAI FAUX
Qı	uestion 6 Considérons une matrice $P = \begin{pmatrix} 1-p & q \\ p & 1-q \end{pmatrix}$ où p et q sont des
	mbres compris entre 0 et 1.
a)	Est-ce que P est une matrice de transition?
b)	Trouver les valeurs propres de P en fonction de p et q .
c)	Expliquer pour quoi P est diagonalisable (pour tous choix de p et q)
d)	Diagonaliser P en fonction de p et q .
e)	Donner des conditions sur p et q pour l'existence de $\lim_{k\to\infty} P^k$.
f)	Calculer $\lim_{k \to \infty} P^k$ lorsque cette limite existe.

Question 7 On considère la population d'une région, divisée en population rurale et population urbaine. On note R(n) et U(n) les populations rurales et urbaines à l'année n. On notera par a le taux d'exode rural annuel et par b le taux d'exode urbain (que l'on supposera constants).

- (a) Écrivez des équations qui expriment R(n+1) et U(n+1) en fonction de R(n), U(n), a et b.
- (b) Écrivez ces équations en une seule équation matricielle.
- (c) Prenons les valeurs a = 0.2 et b = 0.1, ainsi que R(0) = 100000 = U(0). Calculez la population rurale et urbaine à la troisième année.
- (d) Donnez une formule qui permet de calculer R(n) et U(n) pour tout entier n.

Question 8

Après une étude sur 100 ans sur la succession de jours *pluvieux* et *secs* dans une ville on a récolté les statistiques suivantes:

- Si un jour est sec on a 75% de chances que le jour d'après soit sec aussi.
- Si un jour est pluvieux on a 66,2% de chances que le jour suivant soit pluvieux également.
- a) Décrire la situation en proposant un modèle de Markov et sa matrice de transition.
- b) Sachant qu'il fait beau aujourd'hui, calculer la probabilité qu'il pleuve dans 1,2,3 et 10 jours.
- c) Est-ce que la probabilité qu'il fasse beau dans k jours tend vers une certaine valeur lorsque k tend vers l'infini? Si oui calculer cette valeur.

Indication: On pourra s'aider des résultats de l'exercice 6.

Question 9 [Exercice facultatif (plus difficile)]

Deux chiens^a se partagent n puces. À chaque instant une des n puces au hasard saute d'un chien à l'autre. Choisissons de regarder un seul des deux chiens et de compter le nombre de puces qu'il a sur le dos. On notera E_i l'état dans lequel le chien en question a exactement i puces sur son dos.

- a) Exprimer les probabilités de transition $p_{i,i+1}$ et $p_{i,i-1}$ pour tout i.
- b) Quelles sont les autres probabilités de transition?
- c) Écrire la matrice de transition pour n = 4.
- d) Trouver un vecteur stationnaire pour la matrice de transition.
- e) Généraliser les deux points ci-dessus à tout n.

♣ Toute l'équipe vous souhaite une bonne nouvelle année ♣ et tous nos vœux de réussite pour les examens!

^aCet exemple est tiré de l'article *Chaîne de Markov* sur Wikipedia. Une version plus sérieuse de ce modèle − avec des boules et des urnes − a été proposée pour la première fois par Paul et Tatjana Ehrenfest in *Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem*. Physikalische Zeitschrift, vol. 8 (1907), pp. 311 −314.