Durée: 60 minutes EPFL

Algèbre linéaire Test intermédiaire MT Automne 2023

Enoncé

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- −1 point si la réponse est incorrecte.

Pour les questions de type vrai-faux, on comptera :

- +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur ${\pmb x} \in {\mathbb R}^n, \, x_i$ désigne la i-ème composante de ${\pmb x}$.
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $M_{m\times n}$ désigne l'espace vectoriel des matrices de taille $m\times n$ à coefficients réels.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: Le système d'équations linéaires

$$\begin{cases} x - 2y + 3z = 1 \\ 2x + y - 4z = a \\ x - z = 2 \end{cases}$$

possède des solutions si et seulement si

Question 2: Soit $T: \mathbb{R}^3 \to \mathbb{R}^4$ l'application linéaire définie par T(x) = Ax pour tout $x \in \mathbb{R}^3$, où

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 5 \\ 2 & 1 & 7 \\ 0 & 2 & 6 \end{pmatrix}.$$

Alors

- T est injective et surjective.
- T n'est ni injective ni surjective.
- T est surjective mais pas injective.
- T est injective mais pas surjective.

Question 3 : Soit $T: \mathbb{P}_2 \to M_{2 \times 2}$ l'application linéaire définie par

$$T(p) = \begin{pmatrix} p(0) & p(1) \\ p(-1) & p(0) \end{pmatrix} \,, \qquad \text{pour tout } p \in \mathbb{P}_2.$$

Soient

$$\mathcal{B} = \begin{pmatrix} 1, t + t^2, t - t^2 \end{pmatrix} \quad \text{et} \quad \mathcal{C} = \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{pmatrix}$$

des bases ordonnées de \mathbb{P}_2 et $M_{2\times 2}$ respectivement. La matrice $A=[T]_{\mathcal{CB}}$ associée à T par rapport à la base \mathcal{B} de \mathbb{P}_2 et la base \mathcal{C} de $M_{2\times 2}$, telle que $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2$, est

$$\square \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

$$\square \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Question 4: Soit t un paramètre réel. Les vecteurs

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -3 \\ 5 \\ -2 \end{pmatrix} \quad \text{et} \quad \mathbf{v}_3 = \begin{pmatrix} t \\ -9 \\ 8 \end{pmatrix}$$

sont linéairement dépendants si et seulement si

$$t \neq -5$$
.

$$t \neq 5$$
.

$$t=5$$

Question 5: Soient

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \quad \text{et} \quad \mathcal{C} = \left(\begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right)$$

deux bases ordonnées de \mathbb{R}^3 . Soit $P = P_{\mathcal{CB}}$ la matrice de changement de base de la base \mathcal{B} vers la base \mathcal{C} , telle que $[x]_{\mathcal{C}} = P[x]_{\mathcal{B}}$ pour tout $x \in \mathbb{R}^3$. Alors la troisième colonne de P est

$$\square \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

$$\square \begin{pmatrix} -1/2 \\ -1/2 \\ 2 \end{pmatrix}$$

Question 6: Soient

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} a & 3b & c \\ d+2a & 3e+6b & f+2c \\ g & 3h & k \end{pmatrix}$$

deux matrices de taille 3×3 . Si det(A) = 1, alors on a

Question 7: Soit R la forme échelonnée réduite de la matrice

$$\begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \end{pmatrix}.$$

Alors on a

$$r_{14} = -6.$$

$$r_{14} = 0$$

Question 8: L'inverse de la matrice

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 6 & 4 & 5 \\ 5 & 3 & 4 \end{pmatrix}$$

est

Deuxième partie, questions de type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 9: Si A et B sont deux matrices inversibles de taille $n \times n$, alors $(A+B)^2$ est inversible.		
	☐ VRAI	FAUX
Question 10: Soient V et W des espaces vectoriels de dimension finie et soit $T:V\to W$ une application linéaire. Soit d la dimension de l'image de T . Alors $d\le \dim W$ et $d\le \dim V$.		
	☐ VRAI	FAUX
Question 11: L'ensemble $\{p \in \mathbb{P}_n : p(-t) = -p(t), \text{ pour tout } t \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{P}_n .		
	☐ VRAI	FAUX
Question 12: Soit V un espace vectoriel de dimension n et soit $\mathcal{F} = \{v_1, v_2, \dots, v_n\}$ une famille de vecteurs de V . Si toute sous-famille de \mathcal{F} formée de $n-1$ éléments est linéairement indépendante, alors \mathcal{F} est une base de V .		
	☐ VRAI	FAUX
Question 13: Si A est une matrice de taille $m \times n$ dont les colonnes forment une base de \mathbb{R}^m , alors pour tout choix de $\mathbf{b} \in \mathbb{R}^m$, le système $A\mathbf{x} = \mathbf{b}$ possède une solution unique.		
	☐ VRAI	FAUX
Question 14: Si A est une matrice de taille $m \times n$, alors on a $\dim(\operatorname{Im} A) + \dim(\operatorname{Im} A^T) + \dim(\operatorname{Ker} A) + \dim(\operatorname{Ker} A^T) = m + n$.		
	☐ VRAI	☐ FAUX
Question 15: Soit A une matricalors	ce carrée de taille	$n \times n$. Si R est la forme échelonnée réduite de A ,
$\det(A) = \det(R).$		
	☐ VRAI	FAUX
Question 16: Soit $W = \{A \in A \in A \}$ de dimension 3.	$M_{2\times 2}: A = A^T \big\}.$	Alors W est un sous-espace vectoriel de $M_{2\times 2}$
	☐ VRAI	FAUX