Exercices — Série 13

Mots-clés: matrices symétriques, diagonalisation orthogonale, formes quadratiques.

Question 1 Soit A une matrice symétrique de taille $n \times n$.

- a) Montrer que $(Av) \cdot u = v \cdot (Au)$ pour tous $u, v \in \mathbb{R}^n$.
- b) Donner une matrice B de taille 2×2 telle que $(Bv) \cdot u \neq v \cdot (Bu)$ pour certains $u, v \in \mathbb{R}^2$.

Solution:

- a) En effet, $(Av) \cdot u = (Av)^T u = v^T A^T u = v^T A u = v \cdot (Au)$.
- b) Soit $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On a $(Bv) \cdot u \neq v \cdot (Bu)$ pour $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Question 2 Soit A une matrice symétrique inversible. Montrer que l'inverse de A est aussi symétrique.

Solution: Nous avons montré que $(A^{-1})^T = (A^T)^{-1}$ pour toute matrice inversible A. Supposons maintenant que A est symétrique, i.e. $A = A^T$. Alors

$$(A^{-1})^T = (A^T)^{-1} = A^{-1}$$

Nous avons montré que A^{-1} est symétrique.

Question 3 Diagonaliser les matrices suivantes sous la forme $P^TAP = D$, avec P une matrice orthogonale.

a)
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Solution:

a) A est une matrice symétrique réelle, elle est donc diagonalisable en base orthonormale d'après le théorème spectral. On trouve après calculs

$$D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad P = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}.$$

b) De même, A est une matrice symétrique réelle, elle est donc diagonalisable en base orthonormale d'après le théorème spectral. On trouve après calculs

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Question 4 Évaluer la forme quadratique $x^T A x$ si

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \quad \text{et} \quad x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Solution:

- $x = (1, 0, 1)^T$: $x^T A x = 6$;
- $x = (1, 2, 3)^T$: $x^T A x = 62$;
- $x = (x_1, x_2, x_3)^T$: $x^T A x = x_1^2 + x_2^2 + 3x_3^2 + 2x_1x_3 + 4x_2x_3$.

Question 5 Donner la matrice symétrique B de taille 3×3 telle que la forme quadratique $q: \mathbb{R}^3 \to \mathbb{R}$ puisse s'écrire sous la forme $q(x) = x^T B x$ et déterminer le changement de variable x = Py qui transforme la forme quadratique en une forme diagonale $y^T D y$ (indiquer les axes principaux de la forme quadratique) dans les cas suivants.

a)
$$q(x) = 3x_1^2 + 3x_2^2 + 2x_1x_2$$
,

b)
$$q(x) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
,

c)
$$q(x) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3$$
.

Solution:

Principe général: Si les colonnes de P forment une base orthonormale de vecteurs propres de B (symétrique), alors P est une matrice orthogonale et $B = PDP^T$ (où D est la matrice diagonale qui a les valeurs propres de B sur la diagonale placées dans le même ordre que les colonnes de P).

Ainsi, en posant
$$x = Py$$
, i.e. $y = P^Tx$, on a $x^TBx = (P^Tx)^TD(P^Tx) = y^TDy$.

a) Ici on a $B = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Le polynôme caractéristique est

$$-t((3-t)^2 - 1) = -t(t-2)(t-4),$$

d'où les valeurs propres: 0, 2, 4. Ainsi, $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. Les vecteurs propres

associés sont $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. On obtient la matrice orthogonale P en normalisant les vecteurs propres:

$$P = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}.$$

Les axes principaux de la forme quadratique sont

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}.$$

b) $B = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$. Les valeurs propres sont 0, 2, 5, ainsi $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Les

vecteurs propres associés sont $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. On obtient la matrice orthogonale P en normalisant les vecteurs propres:

$$P = \begin{pmatrix} 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Les axes principaux de la forme quadratique sont

$$\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}.$$

c)
$$B = \begin{pmatrix} 5 & 2 & 0 \\ 2 & 6 & -2 \\ 0 & -2 & 7 \end{pmatrix}$$
. Les valeurs propres sont 3, 6, 9, ainsi $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix}$.

Les vecteurs propres associés sont $\begin{pmatrix} -2\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$, $\begin{pmatrix} -1\\-2\\2 \end{pmatrix}$. On obtient la ma-

$$P = \frac{1}{3} \begin{pmatrix} -2 & 2 & -1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{pmatrix}.$$

Les axes principaux de la forme quadratique sont

trice orthogonale P en normalisant les vecteurs propres:

$$\begin{pmatrix} -\frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}, \begin{pmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}.$$

Question 6 Soit $A=\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ et $q(x)=x^TAx$ sa forme quadratique associée. Montrez que

- a) q est définie positive si det(A) > 0 et a > 0;
- b) q est définie négative si det(A) > 0 et a < 0;
- c) q est non définie si det(A) < 0.

Solution: Calculons le polynôme characteristique de la matrice A

$$\det(A - tI_2) = t^2 - \text{Tr}(A)t + \det(A) = t^2 - (a+d)t + (ad - b^2).$$
 (*)

Le théorème spectral pour les matrices symétriques indique que la matrice A a deux valeurs propres réelles λ_1, λ_2 (où $\lambda_1 = \lambda_2$ est possible). En utilisant λ_1, λ_2 , le polynôme characteristique de A est représenté par

$$\det(A - tI_2) = (\lambda_1 - t)(\lambda_2 - t) = t^2 - (\lambda_1 + \lambda_2)t + \lambda_1\lambda_2, \tag{\dagger}$$

donc, en comparant les coéfficients de (*) et (†), nous déduisons

$$\operatorname{Tr}(A) = \lambda_1 + \lambda_2, \quad \det(A) = \lambda_1 \lambda_2.$$

a) Q est définie positive si et seulement si toutes les valeurs propres de A sont strictement positives. Comme $\det(A) = \lambda_1 \lambda_2 > 0$, nous observons que ou $\lambda_1, \lambda_2 > 0$ ou $\lambda_1, \lambda_2 < 0$, donc les valeurs propres sont de même signe. Comme $\det(A) = ad - b^2 > 0$ et a > 0 il est nécessaire que d > 0, donc $0 < a + d = \operatorname{Tr}(A) = \lambda_1 + \lambda_2$. En fait, ça permet à conclure que $\lambda_1, \lambda_2 > 0$.

- b) Q est définie négative si et seulement si toutes les valuers propres de A sont strictement négatives. Comme dans la partie a) nous déduisons de $\det(A) > 0$ que λ_1, λ_2 sont de même signe. Mais par contre, $\det(A) = ad b^2 > 0$ et a < 0 implique que d < 0 est nécessaire. Alors, comme $0 > a + d = \operatorname{Tr}(A) = \lambda_1 + \lambda_2$ on obtient que $\lambda_1, \lambda_2 < 0$.
- c) Q est non définie si et seulement si A a des valeurs propres négatives et positives. De $\lambda_1\lambda_2=\det(A)<0$ nous déduisons directement que λ_1,λ_2 sont de signes différents.

Question 7 Déterminer si les formes quadratiques suivantes sont définies positives, définies négatives, ou indéfinies.

a)
$$Q(x) = 9x_1^2 + 3x_2^2 - 8x_1x_2, x \in \mathbb{R}^2$$
.

b)
$$Q(x) = -5x_1^2 - 2x_2^2 + 4x_1x_2, x \in \mathbb{R}^2$$
.

c)
$$Q(x) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 6x_2x_3 + 6x_1x_3, x \in \mathbb{R}^3$$
.

Solution:

a) La matrice symétrique associée est $B=\begin{pmatrix} 9 & -4 \\ -4 & 3 \end{pmatrix}$, avec pour valeurs propres 1,11 strictement positives, donc la forme quadratique Q est définie positive.

Autre méthode (sans calculer les valeurs propres): les deux valeurs propres de B vérifient $\lambda_1\lambda_2 = \det(B) = 11 > 0$, donc les valeurs propres sont non nulles et de même signe. Comme $\lambda_1 + \lambda_2 = \operatorname{Tr}(B) = 12 > 0$, ce signe est positif, d'où $\lambda_1, \lambda_2 > 0$, et Q est définie positive.

b) La matrice symétrique associée est $B = \begin{pmatrix} -5 & 2 \\ 2 & -2 \end{pmatrix}$, avec pour valeurs propres -1, -6 strictement négatives, donc la forme quadratique Q est définie négative.

Autre méthode (sans calculer les valeurs propres): les deux valeurs propres de B vérifient $\lambda_1\lambda_2 = \det(B) = 6 > 0$, donc les valeurs propres sont non nulles et de même signe. Comme $\lambda_1 + \lambda_2 = \text{Tr}(B) = -7 < 0$, ce signe est négatif, d'où $\lambda_1, \lambda_2 < 0$ et Q est définie négative.

c) La matrice symétrique associée est $B=\begin{pmatrix}2&0&3\\0&2&3\\3&3&2\end{pmatrix}$, avec pour valeurs propres $2,2+\sqrt{18}>0,2-\sqrt{18}<0$. La forme quadratique Q est donc non définie.

Autre méthode (sans calculer les valeurs propres) : on remarque que pour $x = (-1 \ 0 \ 1)^T$, Q(x) = -2 et que pour $x = (1 \ 0 \ 0)^T$, Q(x) = 2. La forme quadratique prend des valeurs positives et négatives et elle est donc non définie.

Question 8 Soit A une matrice symétrique inversible. Montrez que si la forme quadratique $x^T A x$ est définie positive, la forme quadratique $x^T A^{-1} x$ l'est aussi.

Solution: Définissons $P(x) = x^T A x$ et $Q(x) = x^T A^{-1} x$. Suite à la symétrie de A la matrice inverse A^{-1} est aussi symétrique $((A^{-1})^T = (A^T)^{-1} = A^{-1})$. Nous rappelons que P et Q sont définies positives si et seulement si les valeurs propres de A et A^{-1} , respectivement, sont toutes strictement positives. Soient λ_i les valeurs propres de A. Comme P est définie positive nous déduisons que $\lambda_i > 0$ et que A est inversible. De plus, nous savons que les valeurs propres de A^{-1} sont données par λ_i^{-1} . Donc, nous concluons que Q est définie positive comme les valeurs propres de A^{-1} données par λ_i^{-1} satisfont $\lambda_i^{-1} > 0$.

Question 9 Pour les formes quadratiques de la question 5, déterminer

$$\max\{x^T B x; \|x\| = 1\}, \quad \min\{x^T B x; \|x\| = 1\},$$

et trouver un vecteur unitaire qui réalise le maximum ou le minimum de la forme quadratique.

Solution: D'après le cours, le maximum et le minimum de $x^T B x$ avec ||x|| = 1 correspondent respectivement à la plus grande et à la plus petite valeur propre de la matrice B, et ces valeurs sont réalisées par le (ou les) vecteur(s) propre(s) (unitaire(s)) correspondant(s). Ainsi, on obtient

a)
$$\min\{x^T B x; \|x\| = 1\} = 0$$
, réalisé par $x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$,
$$\max\{x^T B x; \|x\| = 1\} = 4$$
, réalisé par $x = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$.

b)
$$\min\{x^TBx; \|x\|=1\}=0, \text{ réalisé par } x=\begin{pmatrix}0\\\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\end{pmatrix},$$

$$\max\{x^TBx; \|x\|=1\}=5, \text{ réalisé par } x=\begin{pmatrix}\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\end{pmatrix}.$$

c)
$$\min\{x^T B x; ||x|| = 1\} = 3$$
, réalisé par $x = \begin{pmatrix} -\frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$, $\max\{x^T B x; ||x|| = 1\} = 9$, réalisé par $x = \begin{pmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$.

Question 10 Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a) Si A est une matrice de taille $n \times n$ telle que 0 est l'unique valeur propre de A, alors A=0.

VRAI FAUX

b) Si A est une matrice symétrique de taille $n \times n$ telle que 0 est l'unique valeur propre de A, alors A=0.

VRAI FAUX

c) La matrice d'une forme quadratique est symétrique.

VRAI FAUX

d) Une forme quadratique strictement positive satisfait $Q(x) > 0, \forall x \in \mathbb{R}^n$.

VRAI FAUX

e) Si les valeurs propres d'une matrice symétrique A sont toutes strictement positives, alors la forme quadratique $x^T A x$ est définie positive.

VRAI FAUX

f) Si les coefficients de A (symétrique) sont tous ≥ 0 alors $q(x) = x^t A x$ est définie positive.

VRAI FAUX

Solution:

- a) Faux: par exemple $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- b) Vrai. Comme A est symétrique, d'après le théorème spectral elle est diagonalisable: $A = PDP^T$ où D est une matrice diagonale dont les valeurs diagonales sont les valeurs propres. D'après l'hypothèse D = 0 (la matrice nulle) et donc A = 0 aussi.
- c) Vrai, par définition.

- d) Faux: pour le vecteur nul on a toujours Q(x) = 0.
- e) Vrai: c'est une conséquence du théorème de diagonalisation orthogonale vue en classe (les deux conditions sont même équivalentes).
- f) Faux: par exemple $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ a comme valeurs propres $\lambda = \pm 1$ elle est donc non définie.

Question 11 Soit $A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}$. Diagonaliser A en base orthonormée.

Solution: On cherche d'abord les valeurs propres de A:

Méthode 1: On calcule le polynôme charactéristique $c_A(t) = \cdots = (t-6)(t-2)^3$, et on trouve $\lambda \in \{6, 2\}$.

Méthode 2: On voit que la somme de chaque ligne vaut 6. Ainsi

$$\begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

On obtient que 2 est une valeur propre en utilisant que la somme des valeurs propres donne la trace de A et le produit des valeurs propres donne le déterminant de A. On obtient que 6 est une valeur propre et 2 est une valeur propre de multiplicité géométrique 3 puisque la matrice $A - 2I_4$ est de rang 1. On en conclut sans faire de calculs que $c_A(t) = (t-6)(t-2)^3$.

On calcule ensuite les espaces propres et on cherche dans chacun d'eux une base orthonormée de vecteurs propres. D'abord

$$E_6 = \text{Vect} \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$

On obtient

$$E_2 = \operatorname{Vect}\left(\begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}\right)$$

On utilise alors le procédé de Gram-Schmidt pour que la base de E_2 soir orthonormée:

$$E_2 = \text{Vect} \left(\begin{pmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sqrt{6}/6 \\ \sqrt{6}/6 \\ -\sqrt{6}/3 \\ 0 \end{pmatrix}, \begin{pmatrix} \sqrt{3}/6 \\ \sqrt{3}/6 \\ \sqrt{3}/6 \\ -\sqrt{3}/2 \end{pmatrix} \right)$$

La matrice de changement de base suivante est donc orthogonale:

$$P = \begin{pmatrix} \sqrt{2}/2 & \sqrt{6}/6 & \sqrt{3}/6 & 1/2 \\ -\sqrt{2}/2 & \sqrt{6}/6 & \sqrt{3}/6 & 1/2 \\ 0 & -\sqrt{6}/3 & \sqrt{3}/6 & 1/2 \\ 0 & 0 & -\sqrt{3}/2 & 1/2 \end{pmatrix}$$

La matrice inverse de P est la transposée P^T et la formule du changement de base donne enfin

$$D = P^T A P = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$