Série 8

Cette série suit le chapitre 4 du livre Algèbre Linéaire et applications de D. Lay.

Mots-clés : espace vectoriel, sous-espace vectoriel, application linéaire, noyau, image, base, coordonnées

Remarques:

- 1. il existe plusieurs méthodes possibles pour résoudre ces exercices. Des fois le corrigé donne aussi une méthode alternative, méthode que nous verrons plus tard dans le cours;
- 2. il peut arriver que certaines questions soient reliées au cours du jeudi.

Exercice 1 (Sous-espace vectoriel)

Trouver la dimension du sous-espace H défini par :

$$H = \{ \overrightarrow{x} \in \mathbb{R}^4 \mid \overrightarrow{x} = \begin{pmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ 5d \end{pmatrix}, \text{ où } a, b, c, d \in \mathbb{R} \}$$

Exercice 2 (Axiomes)

Soit V un espace vectoriel muni des opérations d'addition et de multiplication par un scalaire. En n'utilisant QUE les 10 axiomes d'un espace vectoriel, montrer les propriétés suivantes. Notons l'élément nul de V avec 0_V , afin de le distinguer de 0.

- a) L'élément inverse de $v \in V$ est unique.
- b) $0v = 0_V$ et $0_V = -0_V$.
- c) $\alpha 0_V = 0_V$.
- d) (-1)v = -v.

Exercice 3 (Sous-espace vectoriel)

Soient V et W deux espaces vectoriels, et $T:V\to W$ une transformation linéaire. Montrer que si $U\subset V$ est un sous-espace vectoriel, alors l'ensemble image T(U) est un sous-espace vectoriel de W.

Exercice 4 (Base)

On rappelle que \mathbb{P}_3 est l'espace vectoriel des polynômes de degré inférieur ou égal à 3.

- a) Les vecteurs de \mathbb{P}_3 suivants sont-ils linéairement indépendants?
 - (i) p_1, p_2, p_3 tels que $p_1(t) = 1 t^2, p_2(t) = t^2, p_3(t) = t, t \in \mathbb{R}$.
 - (ii) p_1, p_2, p_3 tels que $p_1(t) = 1 + t + t^2$, $p_2(t) = t + t^2$, $p_3(t) = t^2$, $t \in \mathbb{R}$.
- b) Les vecteurs p_1 , p_2 , p_3 de (ii) forment-ils une base de \mathbb{P}_3 ?

Exercice 5 (Indépendance linéaire)

On rappelle que $C^0([0,1])$ est l'espace vectoriel des fonctions $f:[0,1]\to\mathbb{R}$ continues.

- a) Soit $f,g \in C^0([0,1])$ définie par $f(t) = \sin t$ et $g(t) = \cos t$. La famille $\{f,g\}$ est-elle libre ou liée?
- b) Même question pour $\{f, g, h\}$ où $f(t) = \sin t$, $g(t) = \sin t \cos t$, et $h(t) = \sin 2t$.
- c) Pour les applications $T: C^0([0,1]) \to \mathbb{R}$ suivantes, déterminer celles qui sont linéaires. Pour celles qui ne le sont pas, trouver un contre exemple.
 - 1) $T_1(f) := \int_0^1 f(t) dt$
 - 2) $T_2(f) := \max_{t \in [0,1]} f(t)$
 - 3) $T_3(f) := f(1/2)$.

Exercice 6 (Ker(A), Im(A))

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$
. Trouver une base de $Ker(A)$ et de $Im(A)$.

Exercice 7 (Indépendance linéaire)

Soit $M_{2\times 2}$ l'espace vectoriel des matrices de taille 2×2 .

- a) Montrer que les matrices A, B et C données par $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ sont linéairement indépendantes.
- b) Trouver a, b, c, d tels que pour $D = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, les matrices A, B, C, D forment une base de $M_{2\times 2}$.

2

Exercice 8 (Ker(A), Im(A))

Soit \mathbb{P}_2 l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à 2, dont on admet que c'est un espace vectoriel. On considère la transformation $T:\mathbb{P}_2\to\mathbb{R}^2$ définie par $T(p)=\left(\begin{array}{c}p(0)\\p(0)\end{array}\right)$.

- a) Vérifier que T est linéaire.
- b) Trouver une base de Ker T.
- c) Trouver une base de $\operatorname{Im} T$.

Exercice 9 (Coordonnées)

- a) On considère le vecteur $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ exprimé dans la base canonique de \mathbb{R}^2 . Trouver les coordonnées $[\vec{v}]_{\mathcal{B}}$ de \vec{v} dans la base $\mathcal{B} = (\vec{b}_1, \vec{b}_2)$ de \mathbb{R}^2 , où $\vec{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $\vec{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- b) Même question pour $\vec{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ donné dans la base canonique de \mathbb{R}^3 à exprimer dans la base $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ donnée par

$$\vec{b}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{b}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Exercice 10 (Sous-espaces vectoriels)

Soit V un espace vectoriel et U, W des sous-espaces de V.

- a) Montrer que l'intersection $U \cap W$ est encore un sous-espace de V.
- b) Montrer qu'en général la réunion $U \cup W$ n'est pas un sous-espace de V (donner un contre-exemple explicite, par exemple dans l'espace vectoriel $V = \mathbb{R}^2$).
- c) On pose $U+W=\{u+w\,|\,u\in U,w\in W\}$. Autrement dit U+W est constitué de tous les vecteurs qui sont sommes d'un vecteur de U et d'un vecteur de W. Montrer que U+W est un sous-espace de V.
- d) Dans \mathbb{R}^3 on considère les vecteurs $\overrightarrow{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{w} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et on définit les sous-espaces $U = \operatorname{Vect}\{\overrightarrow{u}\}$ et $W = \operatorname{Vect}\{\overrightarrow{w}\}$. Décrire $U \cup W$ et U + W.

3

Remarque. En fait U+W est le plus petit sous-espace qui contient $U\cup W$.

Exercice 11 (Im(A), Ker(A))

Soient

$$\overrightarrow{w} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
 et $A = \begin{pmatrix} 1 & 3 & -5/2 \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{pmatrix}$.

Déterminer si \overrightarrow{w} est dans ImA, dans KerA ou bien dans les deux.

Exercice 12 (VF)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a) Le système d'équations linéaires homogène représenté par la matrice

(1 2 3 4 5 0 0 0 7 7)
est compatible.

| Description d'équations linéaires inhomogène représenté par la matrice | Description d'équations linéaires inhomogène représenté par la matrice | Description d'equations linéaires inhomogène représenté par la matrice | Description d'equations linéaires inhomogène représenté par la matrice | Description d'equations l'equations l'equatio

Exercice 13 (VF)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a) Si deux lignes d'une matrice de taille 7 × 7 sont les mêmes, alors det A = 0. □ □ □ b) Si A est une matrice carrée dont le déterminant vaut 2, alors det(A³) = 6. □ □ □ c) Si A et B sont des matrices de taille n × n telles que det A = 2 et det B = 5, alors det(A + B) = 7. □ □ □ □ d) Si A est une matrice carrée triangulaire inférieure, alors A est inversible. □ □

Exercice 14 (QCM)

- a) Soit a, b, c des nombres réels. On considère les quatre polynômes $p(t) = t^2 + t + 1$, $q(t) = t^2 + 2t + a$, $r(t) = t^3 + b$ et s(t) = t + c. Alors
 - \square La famille $\{p,q,r,s\}$ forme une base de \mathbb{P}_4 pour certaines valeurs des paramètres a,b,c;
 - \square La famille $\{p,q,r,s\}$ forme une base de \mathbb{P}_3 pour certaines valeurs des paramètres a,b,c;
 - \square La famille $\{p,q,r,s\}$ est toujours linéairement dépendante dans \mathbb{P}_4 ;
 - \square La famille $\{p,q,r,s\}$ est linéairement dépendante dans \mathbb{P}_3 lorsque $a-c-1\neq 0$.
- b) Soient $A_1 = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $A_4 = \begin{pmatrix} 0 & 3 \\ 1 & b \end{pmatrix}$. Alors les matrices A_i , i = 1, 2, 3, 4, sont linéairement indépendantes
 - \square pour toutes valeurs de a, b.
 - \square lorsque $a \neq 0$ et pour toutes valeurs de b.
 - \square lorsque $a \neq 0$ et $b \neq 3$.
 - \square lorsque $a \neq 0$ et b = 3.
- c) Dire lequel parmi les énoncés suivants est vrai.
 - \square Soit f un vecteur de l'espace vectoriel V des fonctions réelles d'une variable réelle. S'il existe un réel t tel que f(t)=0, alors f est le vecteur nul de V.
 - \square Soit f un vecteur de l'espace vectoriel V des fonctions réelles d'une variable réelle. Si f est le vecteur nul de V, alors f(t) = 0 pour tout nombre réel t.
 - \square Soit p un vecteur de l'espace vectoriel V des polynômes de degré ≤ 5 . Si p(0) = 0, alors p est le vecteur nul de V.
 - \square Soit $(x_n)_{n\geqslant 0}$ un vecteur de l'espace vectoriel V des suites réelles. S'il existe un entier n tel que $x_n=0$, alors $(x_n)_{n\geqslant 0}$ est le vecteur nul de V.