Série 4

Cette série suit le chapitre 1 du livre Algèbre Linéaire et applications de D. Lay.

Mots-clés : base, transformation linéaire, indépendance linéaire

Remarques:

- 1. il existe plusieurs méthodes possibles pour résoudre ces exercices. Des fois le corrigé donne aussi une méthode alternative, méthode que nous verrons plus tard dans le cours;
- 2. il peut arriver que certaines questions soient reliées au cours du jeudi.

Définition Une application / transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ est linéaire si

- 1. $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}), \forall \vec{x}, \vec{y} \in \mathbb{R}^n$;
- 2. $T(\lambda \vec{x}) = \lambda T(\vec{x}), \forall \vec{x} \in \mathbb{R}^n, \lambda \in \mathbb{R}$

Exercice 1 ((In)dépendance linéaire et span)

a) Les vecteurs
$$\vec{u}_1 = \begin{pmatrix} 0 \\ -6 \\ 1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix}$, $\vec{u}_3 = \begin{pmatrix} -8 \\ -4 \\ 3 \end{pmatrix}$ sont-ils linéairement dépendants?

b) Les vecteurs
$$\overrightarrow{u}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $\overrightarrow{u}_2 = \begin{pmatrix} -1 \\ 3 \\ 7 \end{pmatrix}$ et $\overrightarrow{u}_3 = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix}$ engendrent-ils \mathbb{R}^3 ?

c) Les vecteurs
$$\overrightarrow{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$
, $\overrightarrow{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$ et $\overrightarrow{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$ engendrent-ils \mathbb{R}^4 ?

Exercice 2 (Span)

Soient
$$\vec{v_1} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
 et $\vec{v_2} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix}$.

a) Donner une interprétation géométrique de $\text{Vect}\{\vec{v_1}, \vec{v_2}\}$.

b) Est-ce que
$$\vec{b} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 est dans le Vect $\{\vec{v_1}, \vec{v_2}\}$?

Exercice 3 (Span)

Soient
$$\vec{v_1} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$
 et $\vec{v_2} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$. Montrer que pour tous h et $k \in \mathbb{R}$, $\begin{pmatrix} h \\ h \\ k \end{pmatrix}$ appartient à $\text{Vect}\{\vec{v_1}, \vec{v_2}\}$.

Exercice 4 (Solution paramétrée)

Pour chacun des systèmes suivants :

- i) Écrire la matrice augmentée.
- ii) Transformer la matrice augmentée sous forme échelonnée réduite.
- iii) Identifier les variables de bases (principales) et les variables libres (secondaires), et écrire la solution générale.

a)
$$\begin{cases} 2x_1 + x_2 = 8 \\ 4x_1 - 3x_2 = 6 \end{cases}$$
b)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ -2x_1 + x_2 - x_3 = 2 \\ 2x_1 - x_2 + 2x_3 = -1 \end{cases}$$
c)
$$\begin{cases} x_1 + 2x_2 = 1 \\ x_3 = 2 \\ x_4 = -1 \end{cases}$$
d)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 4x_2 + 2x_3 = 3 \end{cases}$$
e)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 2 \\ x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3 \\ x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2 \end{cases}$$

Exercice 5 (Preuve)

Prouver l'affirmation suivante :

Soit l'ensemble $\{\vec{v_1}, \dots, \vec{v_p}\}$ de vecteurs de \mathbb{R}^n . Si p < n alors l'ensemble ne peut pas être une base de \mathbb{R}^n .

Exercice 6 (Solutions paramétrées)

Soit

$$A = \begin{pmatrix} 1 & 6 & 0 & 8 & -1 & -2 \\ 0 & 0 & 1 & -3 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

2

Ecrire l'ensemble solution de l'équation $A\overrightarrow{x} = \overrightarrow{0}$ sous forme paramétrique vectorielle.

Exercice 7 (Solution)

Déterminer les valeurs du nombre réel a pour lesquelles le système d'équations linéaires

$$\left\{\begin{array}{ll} x+2y+3z=&a\\ 2x+ay+4z=-4\\ -x+&y+az=&2 \end{array}\right.$$

possède des solutions. Déterminer ces solutions.

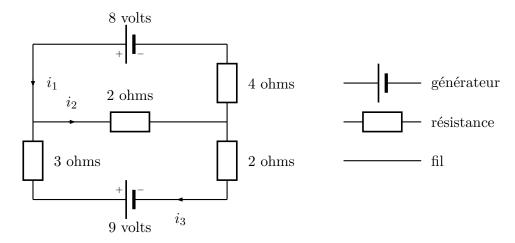
Exercice 8 (Kirchhoff)

Les deux lois de Kirchhoff

- 1. À chaque nœud (embranchement) d'un circuit électrique, la somme des courants (intensités) qui entrent dans le nœud est égale à la somme des courants qui en sortent.
- 2. La somme des tensions (différences de potentiels) le long de tout circuit fermé est nulle (l'augmentation du potentiel est comptée avec + et la diminution avec -).

On rappelle que la chute de potentiel U dans une résistance R traversée par un courant d'intensité I est donnée par la loi d'Ohm U=RI.

Déterminer les intensités i_1 , i_2 , i_3 dans le circuit suivant.



Exercice 9 (Transformation linéaire)

Trouver les matrices correspondant aux transformations linéaires suivantes (exprimées dans la base canonique) :

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\0 \end{pmatrix}$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$, $T\left(\begin{pmatrix} 0\\0\\1 \end{pmatrix}\right) = \begin{pmatrix} 2\\7 \end{pmatrix}$

Exercice 10 (Transformation linéaire)

Décrire géométriquement la transformation linéaire suivante : $T:\mathbb{R}^2 \to \mathbb{R}^2$ donnée par

$$T(\vec{u}) = A\vec{u}$$
 où $A = \begin{pmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{pmatrix}$.

Indication : Calculer les images de $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ par T.

Exercice 11 (QCM: span)

Soit $Vect\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ avec

$$\vec{v_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ \vec{v_2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{v_3} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Laquelles des informations suivantes est correcte?

- \square Le Vect $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ est une droite.
- \square Le Vect $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ est un plan.
- \Box Le Vect $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ est ne contient que $\vec{0}$.

Exercice 12 (QCM: solutions)

a) Pour quelle valeur de h la matrice suivante est-elle la matrices augmentée d'un système linéaire compatible (consistant) :

$$\left(\begin{array}{cc|c} 1 & -3 & h \\ -2 & 6 & -5 \end{array}\right)$$

- $\square \ h = 5,$
- $\Box \ h = 5/2,$
- $\Box \ h \neq 5/2,$
- $\Box \ h = -5/2.$

b`) Même	question	pour	la	matrice
	, 1,101110	quoblion	pour	100	111001100

$$\left(\begin{array}{cc|c} 1 & h & 4 \\ 3 & 6 & 8 \end{array}\right) .$$

- \square h=2,
- $\square h = -2,$
- \square $h \neq 2$,
- $\square \ h \neq -2.$

Exercice 13 (Vrai-faux)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

V F

- a) Deux vecteurs sont linéairement dépendants si et seulement s'ils se trouvent sur une même droite qui passe par l'origine. $\hfill\Box$
- b) Si un ensemble comporte moins de vecteurs que le nombre de composantes de ceux-ci, alors il est linéairement indépendant. $\hfill\Box$
- c) Une équation homogène est toujours compatible. \Box
- d) Si \vec{x} est une solution non triviale de $A\vec{x} = \vec{0}$, alors aucune composante de \vec{x} est nulle.

Exercice 14 (Vrai-faux)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

V F

- a) Les vecteurs $\vec{u} \vec{v}$, $\vec{u} \vec{w}$ et $\vec{v} \vec{w}$ sont linéairement dépendants pour tout choix de $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$.
- b) Un ensemble formé d'un seul vecteur est linéairement indépendant. \Box
- c) Une matrice 6×4 doit posséder quatre pivots pour que ses colonnes soient linéairement indépendantes. \Box
- d) Les colonnes d'une matrice 3×4 engendrent \mathbb{R}^3 .