Série 1

Cette série suit le chapitre 1.1 du livre Algèbre Linéaire et applications de D. Lay.

Mots-clés: équation linéaire, systèmes d'équations linéaires, solutions

Remarques:

- 1. il existe plusieurs méthodes possibles pour résoudre ces exercices. Des fois le corrigé donne aussi une méthode alternative, méthode que nous verrons plus tard dans le cours:
- 2. il peut arriver que certaines questions soient reliées au cours du jeudi.

Exercice 1 (Équations linéaires)

Parmi les équations suivantes, déterminer celles qui sont linéaires.

a)
$$x_1^2 + x_2^2 = 1$$

b)
$$2^2x_1 + 2^2x_2 = 1$$

c)
$$\sqrt{3}x_1 + (1 - \sqrt{2})x_2 + 3 = \pi x_1$$

d)
$$3x_1 + 2x_2 + 4x_3x_4 = 5$$

e)
$$\left(\frac{1}{\sqrt{2}} - 1\right) x_1 - 2 = 2x_1 + 4x_2 + \sqrt{3}x_3 + x_9$$

Exercice 2 (Représentation graphique)

Considérons l'équation suivante

$$\alpha x_1 + \beta x_2 = 1.$$

- a) Dessiner la solution avec les paramètres $\alpha = 1$, $\beta = 3$.
- b) Pour quelles valeurs de α, β la droite $\alpha x_1 + \beta x_2 = 1$ est-elle parallèle à la droite $-x_1 + x_2 = -1$?
- c) Trouver les valeurs de α, β (si elles existent) telles que le système

$$\begin{cases}
-x_1 + x_2 = -1 \\
\alpha x_1 + \beta x_2 = 1 \\
(\alpha - 1) x_1 + (\beta + 1) x_2 = 0
\end{cases}$$

- i) possède une infinité de solutions;
- ii) ne possède aucune solution;
- iii) possède une solution unique.

Exercice 3 (Graphes et droites)

Soient les deux droites d'équations respectives $\frac{1}{2}x_1 - 3x_2 = 6$ et $x_1 + 2x_2 = 4$. Représenter graphiquement les deux équations dans un systèmes d'axes x_1 et x_2 et déterminer le point d'intersection de ces deux droites

Exercice 4 (Système linéaire)

Remplisser les informations manquantes pour chaque système ci-dessous.

a) $m = \underline{\hspace{1cm}}$ équations et $n = \underline{\hspace{1cm}}$ variables

$$\begin{cases} 3x_1 + 4x_3 = 5 \\ x_2 = 2 \end{cases} \text{ avec coefficients } \begin{cases} a_{11} = \underline{}, & a_{12} = \underline{}, & a_{13} = \underline{} \\ a_{21} = \underline{}, & a_{22} = \underline{}, & a_{23} = \underline{} \end{cases} \text{ et } \begin{cases} b_1 = \underline{} \\ b_2 = \underline{} \end{cases}$$

Vérifier que $(-2, 2, \frac{11}{4})$ est une solution du système linéaire. Est- ce que $(-2, 1, \frac{11}{4})$ est une solution du système linéaire?

b) $m = \underline{\hspace{1cm}}$ équations et $n = \underline{\hspace{1cm}}$ variables

$$\begin{cases} x_1 - \frac{1}{2}x_2 &= -\frac{1}{2} \\ 2x_1 - x_2 &= -5 \end{cases} \text{ avec coefficients } \begin{array}{l} a_{11} = \underline{}, & a_{12} = \underline{} \\ a_{21} = \underline{}, & a_{22} = \underline{} \end{array} \text{ et } \begin{array}{l} b_1 = \underline{} \\ b_2 = \underline{} \end{array}$$

Donner la/les solution(s) du système si elles existent.

c) $m = \underline{\hspace{1cm}}$ équations et $n = \underline{\hspace{1cm}}$ variables

$$\begin{cases} -x_1 + 2x_2 &= 0 \\ x_1 + x_2 &= 3 \end{cases} \text{ avec coefficients } \begin{array}{cccc} a_{11} = \underline{}, & a_{12} = \underline{} & \text{et } b_1 = \underline{} \\ a_{21} = \underline{}, & a_{22} = \underline{} & \text{et } b_2 = \underline{} \end{array}$$

Vérifier que (2,1) est une solution du système linéaire. Donner la/les solution(s) du système s'il y'en a d'autres.

d) $m = \underline{\hspace{1cm}}$ équations et $n = \underline{\hspace{1cm}}$ variables

$$\begin{cases} 3x_1 + x_2 &= 1 \\ x_1 + \frac{1}{3}x_2 &= \frac{1}{3} \end{cases} \text{ avec coefficients } \begin{array}{l} a_{11} = \underline{\hspace{0.5cm}}, & a_{12} = \underline{\hspace{0.5cm}}, & a_{12} = \underline{\hspace{0.5cm}}, & b_1 = \underline{\hspace{0.5cm}}, \\ a_{21} = \underline{\hspace{0.5cm}}, & a_{22} = \underline{\hspace{0.5cm}}, & b_2 = \underline{\hspace{0.5cm}}. \end{array}$$

Donner la/les solution(s) du système si elles existent.

Exercice 5 (Représentation graphique)

On considère l'équation ax + by = 2.

- a) Représenter dans le plan \mathbb{R}^2 les solutions lorsque a=2 et b=-1.
- b) Même question pour a = 1 et b = 2.

c) Estimer géométriquement la solution du système

$$2x - y = 2$$
$$x + 2y = 2$$

sur l'illustration des points a) et b), puis résoudre le système.

Exercice 6 (Représentation graphique)

Considérons le système linéaire

$$\begin{cases} x_1 - 5x_2 &= 0 \\ -x_1 - 2x_2 &= 0 \\ 3x_1 - 3x_2 &= 1 \end{cases}$$

- a) Est-ce que le système est compatible?
- b) Donner un'interprétation géométrique du résultat.

Exercice 7 (Polynôme de degré 2)

Trouver le polynôme de degré 2 de la forme $f(t) = at^2 + bt + c$ dont le graphe passe par les points (1, -1), (2, 3) et (3, 13). Esquisser le graphe de ce polynôme.

Exercice 8 (Vrai-Faux)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a) Toutes les opérations élémentaires sur les lignes sont réversibles. \square \square b) Une matrice de taille 5×6 a 6 lignes. \square \square c) L'ensemble des solutions d'un système linéaire dans les variables x_1, x_2, \ldots, x_n est une liste de nombres (s_1, s_2, \ldots, s_n) qui, substitués à x_1, x_2, \ldots, x_n respectivement, rendent correcte chaque équation du système. \square \square d) L'existence et l'unicité d'une solution sont deux questions fondamentales pour un système linéaire. \square

Exercice 9 (QCM)

Le système d'équations linéaires

$$\begin{cases} x + 2y + 2z = 18 \\ x + 2y + z = 13 \\ x + y = 5 \end{cases}$$

possède une solution unique telle que

z	=	2
z	=	3
z	=	4
z	=	5

Copyright © Prof(s). de la section de mathématiques EPFL (Assyr Abdulle, Orane Pouchon, Jerôme Scherer, Simone Deparis, José Luis Zuleta,...). Les exercices de type vrai ou faux proviennent du livre: D.C. Lay. *Algèbre linéaire : théorie, exercices et applications*. De Boeck, Bruxelles, 2005.