Série 9 (Corrigé)

Exercice 1 (Base de ker)

Soit la matrice

$$C = \begin{pmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{pmatrix}$$

- 1. Trouver une base de KerC.
- 2. On note par T la transformation linéaire de \mathbb{R}^5 dans \mathbb{R}^4 définie par $T(\overrightarrow{x}) = C\overrightarrow{x}$. L'application T est-elle injective? T est-elle surjective? Justifier votre réponse.

Sol.: L'espace nul ou noyau de C est la solution générale de l'équation $C\overrightarrow{x} = \overrightarrow{0}$. On doit résoudre cette équation pour trouver une base de KerC. On échelonne puis on réduit C:

$$\begin{pmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} l_4 \\ l_1 \\ l_2 \\ l_3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 & 0 & -2 \\ 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \end{pmatrix} \sim \begin{pmatrix} l_2 - \frac{5}{2}l_1 \\ l_3 - \frac{3}{2}l_1 \\ l_4 - 4l_1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 & 0 & -2 \\ 0 & -3/2 & -1/2 & 2 & 5 \\ 0 & 3/2 & 1/2 & -1 & -9 \\ 0 & 0 & 0 & -5 & 20 \end{pmatrix}$$

$$\sim \frac{1}{l_3 + l_2} \begin{pmatrix} 2 & 1 & 1 & 0 & -2 \\ 0 & -3/2 & -1/2 & 2 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & -5 & 20 \end{pmatrix} \sim \frac{1}{l_4 + 5l_3} \begin{pmatrix} 2 & 1 & 1 & 0 & -2 \\ 0 & -3/2 & -1/2 & 2 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

On reduit la forme échelonnée précédente :

$$C \sim \begin{matrix} . \\ . \\ . \\ . \\ . \end{matrix} \begin{pmatrix} 2 & 1 & 1 & 0 & -2 \\ 0 & -3/2 & -1/2 & 0 & 13 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{matrix} \end{pmatrix} \sim \begin{matrix} . \\ . \\ . \\ . \\ . \end{matrix} \begin{pmatrix} 2 & 1 & 1 & 0 & -2 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{matrix} \end{pmatrix} \sim \begin{matrix} . \\ . \\ . \\ . \\ . \\ . \end{matrix} \begin{pmatrix} 2 & 0 & 2/3 & 0 & 20 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{matrix} \end{pmatrix} \sim \begin{matrix} . \\ . \\ . \\ . \\ . \\ . \end{matrix} \begin{pmatrix} 2 & 0 & 2/3 & 0 & 20 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{matrix} \end{pmatrix}$$

 $La \ forme \ \'echelonn\'ee \ r\'eduite \ de \ C \ est \ donc \ C' = \begin{pmatrix} 1 & 0 & 1/3 & 0 & 10/3 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$

1. On écrit le système $C'\overrightarrow{x} = \overrightarrow{0}$ sous la forme classique, pouvant à présent exprimer chaque inconnue principale en fonction des inconnues secondaires :

$$\begin{cases} x_1 + \frac{1}{3}x_3 + \frac{10}{3}x_5 &= 0 \\ x_2 + \frac{1}{3}x_3 - \frac{26}{3}x_5 &= 0 \\ x_4 - 4x_5 &= 0 \end{cases} \sim \begin{cases} x_1 &= -\frac{1}{3}x_3 - \frac{10}{3}x_5 \\ x_2 &= -\frac{1}{3}x_3 + \frac{26}{3}x_5 \\ x_3 &= x_3 \\ x_4 &= 4x_5 \\ x_5 &= x_5 \end{cases}$$

La forme vectorielle de ce système est :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_3 \begin{pmatrix} -1/3 \\ -1/3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -10/3 \\ 26/3 \\ 0 \\ 4 \\ 1 \end{pmatrix}.$$

On obtient la solution générale du système $C\overrightarrow{x} = \overrightarrow{0}$:

$$\overrightarrow{x} = \alpha \begin{pmatrix} -1/3 \\ -1/3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -10/3 \\ 26/3 \\ 0 \\ 4 \\ 1 \end{pmatrix} \quad pour \ tous \ \alpha, \beta \in \mathbb{R}.$$

Le noyau de C est engendré par les vecteurs obtenus ci-dessus, que l'on choisit par exemple de multiplier par 3 pour éviter des fractions :

$$\overrightarrow{w}_1 = \begin{pmatrix} -1\\ -1\\ 3\\ 0\\ 0 \end{pmatrix} et \overrightarrow{w}_2 = \begin{pmatrix} -10\\ 26\\ 0\\ 12\\ 3 \end{pmatrix}.$$

2. L'application T n'est pas surjective puisque l'espace des colonnes n'engendre pas \mathbb{R}^4 et elle n'est pas injective puisque le vecteur nul n'est pas la seule solution de $\overrightarrow{Cx} = \overrightarrow{0}$.

Exercice 2 (Changement de bases)

Soient $\mathcal{B} = (\vec{b}_1, \vec{b}_2)$ et $\mathcal{C} = (\vec{c}_1, \vec{c}_2)$ deux bases de \mathbb{R}^2 avec

$$\vec{b}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{c}_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \quad \vec{c}_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$

- a) Donner la matrice $P_{\mathcal{B}\leftarrow\mathcal{C}}$ de changement de base (matrice de passage) de la base \mathcal{C} vers la base \mathcal{B} .
- b) Donner la matrice de changement de base (matrice de passage) de la base \mathcal{B} vers la base \mathcal{C} .

- c) Si $\vec{v} \in \mathbb{R}^2$ est tel que $[\vec{v}]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, calculer $[\vec{v}]_{\mathcal{C}}$.
- d) À présent, si $[\vec{v}]_{\mathcal{C}} = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$, calculer $[\vec{v}]_{\mathcal{B}}$.

Sol.:

a) $[P]_{\mathcal{B}\leftarrow\mathcal{C}}$ est la matrice dont les colonnes sont les coordonnées de \vec{c}_1 et \vec{c}_2 dans la base \mathcal{B} , i.e.

$$[P]_{\mathcal{B}\leftarrow\mathcal{C}}=([\vec{c}_1]_{\mathcal{B}}\ [\vec{c}_1]_{\mathcal{B}}).$$

Il faut donc résoudre deux sytèmes linéaires afin de trouver $[\vec{c}_i]_{\mathcal{B}}$, i = 1, 2:

$$\vec{c_i} = x_{1i}\vec{b_1} + x_{2i}\vec{b_2} = (\vec{b_1} \quad \vec{b_2}) \begin{pmatrix} x_{1i} \\ x_{2i} \end{pmatrix}.$$

Ainsi, $P_{\mathcal{B}\leftarrow\mathcal{C}}$ est la solution de

$$(\vec{b}_1 \quad \vec{b}_2)P_{\mathcal{B}\leftarrow\mathcal{C}} = (\vec{c}_1 \quad \vec{c}_2).$$

Si on désigne par $\mathcal E$ la base canonique, cela peut aussi être interprété comme

$$P_{\mathcal{E} \leftarrow \mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{C}} = P_{\mathcal{E} \leftarrow \mathcal{C}} \implies P_{\mathcal{B} \leftarrow \mathcal{C}} = P_{\mathcal{E} \leftarrow \mathcal{B}}^{-1} P_{\mathcal{E} \leftarrow \mathcal{C}}.$$

Pour résoudre ce système linéaire, on échelonne et on réduit la matrice $(\vec{b}_1 \quad \vec{b}_2)$ augmentée avec les vecteurs \vec{c}_1 et \vec{c}_2 :

$$(\vec{b}_1 \quad \vec{b}_2 | \vec{c}_1 \quad \vec{c}_2) = \begin{pmatrix} 3 & 1 & | & 4 & 4 \\ 2 & 1 & | & 3 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 0 & | & 1 & 4 \\ 0 & 1 & | & 1 & -8 \end{pmatrix}.$$

Ainsi, la matrice de passage cherchée est $P_{\mathcal{B}\leftarrow\mathcal{C}}=\begin{pmatrix}1&4\\1&-8\end{pmatrix}$.

b) On a
$$P_{\mathcal{C} \leftarrow \mathcal{B}} = P_{\mathcal{B} \leftarrow \mathcal{C}}^{-1}$$
, d'où la matrice cherchée est $P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{12} & -\frac{1}{12} \end{pmatrix}$.

c)
$$[\vec{v}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ \frac{1}{4} \end{pmatrix}$$
.

$$d) \ [\vec{v}]_{\mathcal{B}} = P_{\mathcal{B} \leftarrow \mathcal{C}} \begin{pmatrix} 9 \\ 1 \end{pmatrix} = \begin{pmatrix} 13 \\ 1 \end{pmatrix}.$$

Exercice 3 (Image et noyau)

Soient

$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- a) Montrer que les matrices A et B sont équivalentes (selon les lignes). (Indication : quelle est la forme échelonnée et réduite des deux matrices?)
- b) Calculer le rang de A et dimKer A.
- c) Trouver une base pour chacun des sous-espaces $\operatorname{Im} A$, $\operatorname{Ker} A$ et $\operatorname{Ker} A^T$, ainsi que du sous-espace $\operatorname{Lgn}(A)$ engendré par les lignes de A.

Sol.:

- a) On constate que la forme échelonnée réduite des deux matrices est la même, elles sont donc équivalentes.
- b) En analysant la matrice B on remarque alors que : Il y a deux colonnes indépendantes ce qui donne rangA = 2 (le rang est le nombre de colonnes-pivot) et une base de ImA peut être formée par les deux premières colonnes de A qui correspondent aux colonnes-pivot de sa forme échelonnée. Par le Théorème du rang on trouve dimKerA = 4 - rangA = 2.
- c) Trouvons les bases.

Base de Ker(A): L'équation $A\overrightarrow{x} = 0$ est équivalente à $B\overrightarrow{x} = 0$; une base de Ker(A)

est donnée par exemple par : $\begin{pmatrix} 2 \\ 5 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -5 \\ -3 \\ 0 \\ 1 \end{pmatrix}$ et donc dim KerA = 2, ce qui confirme

le calcul effectué ci-dessus.

Base de Lgn(A): Une base du sous-espace engendré par les lignes de A est donnée par les lignes non nulles de la forme échelonnée B:

$$\left(\begin{pmatrix} 1 \\ 0 \\ -1 \\ 5 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 5 \\ -6 \end{pmatrix} \right)$$

Base de Im(A) et Ker(A): Enfin ImA coïncide avec le sous-espace engendré par les lignes de A^T . Puisqu'il est de dimension 2, le Théorème du rang nous apprend que le noyau de A^T est de dimension 3-2=1. On trouve que $KerA^T$ est engendré par

$$\begin{pmatrix} 2 \\ 7 \\ 1 \end{pmatrix}$$
.

Exercice 4 (Applications linéaires)

1. Soit $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ x + 3y \\ x - y \end{pmatrix}.$$

a) Donner la matrice A de l'application linéaire T par rapport aux bases canoniques E de \mathbb{R}^2 et \mathbb{R}^3 .

4

b) Donner la matrice B de l'application linéaire T par rapport aux bases

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} \text{ de } \mathbb{R}^2 \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ de } \mathbb{R}^3.$$

2. Soit $T: \operatorname{Mat}_{2\times 2}(\mathbb{R}) \to \operatorname{Mat}_{2\times 2}(\mathbb{R})$ l'application linéaire définie par $T(C) = X \cdot C$, où X est la matrice de taille 2×2

$$X = \begin{pmatrix} 1 & 3/2 \\ 2 & 3 \end{pmatrix}.$$

- a) Donner la matrice A de l'application linéaire T par rapport à la base canonique de $\mathrm{Mat}_{2\times 2}(\mathbb{R})$.
- b) Donner la matrice B de l'application linéaire T par rapport à la base

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ -2 & 0 \end{pmatrix}, \begin{pmatrix} 6 & 3 \\ -4 & -2 \end{pmatrix} \right\} \text{ de } \operatorname{Mat}_{2 \times 2}(\mathbb{R}).$$

On cherche $B = ([T(B_1)]_{\mathcal{B}} [T(B_2)]_{\mathcal{B}} [T(B_3)]_{\mathcal{B}} [T(B_4)]_{\mathcal{B}}).$

Sol.:

1. La matrice de l'application linéaire T par rapport à la base canonique est

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \\ 1 & -1 \end{pmatrix}.$$

Pour calculer la matrice B, on commence par calculer les images par T des vecteurs de la base \mathcal{B} :

$$T\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}1\\4\\0\end{pmatrix}\quad et\quad T\begin{pmatrix}-1\\1\end{pmatrix}=\begin{pmatrix}-3\\2\\-2\end{pmatrix}.$$

Ensuite, on calcule les coordonnées de ces deux vecteurs image dans la base C en résolvant les systèmes suivants :

$$\begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 2 & 1 & 1 & | & 4 \\ 2 & 0 & 1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 5 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -10 \end{pmatrix} \quad et \quad \begin{pmatrix} 1 & -1 & 0 & | & -3 \\ 2 & 1 & 1 & | & 2 \\ 2 & 0 & 1 & | & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -4 \end{pmatrix}.$$

Ainsi

$$B = \begin{pmatrix} 5 & 1 \\ 4 & 4 \\ -10 & -4 \end{pmatrix}.$$

2. La matrice de l'application linéaire T par rapport à la base canonique est

$$A = \begin{pmatrix} 1 & 0 & 3/2 & 0 \\ 0 & 1 & 0 & 3/2 \\ 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 \end{pmatrix}.$$

5

Pour calculer la matrice B, on commence par calculer les images par T des matrices de la base \mathcal{B} :

$$T\begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 5/2 \\ -4 & 5 \end{pmatrix}, \quad T\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ 1 & -1 \end{pmatrix},$$
$$T\begin{pmatrix} 3 & 0 \\ -2 & 0 \end{pmatrix} = 0, \quad T\begin{pmatrix} 6 & 3 \\ -4 & 2 \end{pmatrix} = 0.$$

Ensuite, on calcule les coordonnées des deux premiers vecteurs image dans la base \mathcal{C} (les deux derniers sont les vecteurs nuls quelle que soit la base considérée) en résolvant les systèmes suivants :

$$\begin{pmatrix} 1 & -1 & 3 & 6 & | & -2 \\ 1 & 1 & 0 & 3 & | & 5/2 \\ -2 & 1 & -2 & -4 & | & -4 \\ 1 & -1 & 0 & -2 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & | & -1/2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & 3 & 6 & | & 1/2 \\ 1 & 1 & 0 & 3 & | & -1/2 \\ -2 & 1 & -2 & -4 & | & 1 \\ 1 & -1 & 0 & -2 & | & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 4 \\ 0 & 0 & 1 & 0 & | & 9/2 \\ 0 & 0 & 0 & 1 & | & -3/2 \end{pmatrix}.$$

Ainsi

$$B = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ -1 & 9/2 & 0 & 0 \\ -1/2 & -3/2 & 0 & 0 \end{pmatrix}.$$

Exercice 5 (Preuve)

Prouver le théorème suivant. Soient V un espace vectoriel et $\mathcal{B} = (b_1, \ldots, b_n)$ une base de V. Alors toute famille d'éléments de V de plus de n éléments est une famille linéairement dépendante.

Sol.:

Soit $\{v_1, \ldots, v_p\}$ avec p > n une famille de vecteurs de V. On sait que l'application coordonnées $[\cdot]_B : V \to \mathbb{R}^n$ est un isomorphisme et donc préserve les relations de dépendances et d'indépendances linéaire. Ainsi $\{[v_1]_B, \ldots, [v_p]_B\}$ est une famille de p vecteurs de \mathbb{R}^n , possédant la même relation de dépendance que $\{v_1, \ldots, v_p\}$.

Grâce au chapitre 1, on sait que $\{[v_1]_B, \ldots, [v_p]_B\}$ est une famille liée dans \mathbb{R}^n car p > n. Ainsi il existe $\alpha_1, \ldots, \alpha_p$ des réels non tous nuls, tels que

$$\alpha_1[v_1]_B + \ldots + \alpha_p[v_p]_B = \vec{0}.$$

 $Or [\cdot]_B$ est linéaire, donc on obtient

$$[\alpha_1 v_1 + \ldots + \alpha_p v_p]_B = \vec{0}.$$

où $\vec{0}$ nous donne les coefficients de $\alpha_1 v_1 + \ldots + \alpha_p v_p$ comme combinaison linéaire des vecteurs de la base B. Ainsi,

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0b_1 + 0b_2 + \cdots + 0b_n = 0_V$$

Ainsi $\{v_1, \ldots, v_p\}$ n'est pas libre car 0_V s'exprime comme combinaisons linéaires de v_1, \ldots, v_p avec des coefficients $\alpha_1, \ldots, \alpha_p$ non tous nuls.

Exercice 6 (Rang)

- a) Soit A une matrice 5×6 . Si dim Ker A = 3, quel est le rang de A?
- b) Soit A une matrice 7×3 . Quel est le rang maximum de A? Quelle est la dimension minimum de Ker A? Même question si A est une matrice 3×7 .
- c) Soit A une matrice $n \times n$. Donner une condition sur rang(A) pour que A^T soit inversible.
- d) Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ une transformation linéaire telle que $T \circ T \circ T = I_3$ (l'application identité). Quelle est la dimension de Ker T?

Sol.:

- a) On considère l'application linéaire associée de \mathbb{R}^6 dans \mathbb{R}^5 . Le théorème du rang donne $\operatorname{rang}(A) + \dim \operatorname{Ker} A = 6 \Rightarrow \operatorname{rang}(A) = 3$.
- b) Si A est de taille 7 × 3, alors rang(A) + dim Ker A = 3. Le rang maximum est 3 et la dimension minimum du noyau est 0.
 Si A est de taille 3 × 7, le rang maximum est 3. Comme rang(A) + dim Ker A = 7, la dimension minimum du noyau est 4.
- c) A^T est inversible $\Leftrightarrow A$ est inversible $\Leftrightarrow \operatorname{rang}(A) = n$.
- *d*) On a

$$3 = \operatorname{rang}(I_3) = \operatorname{rang}(T \circ T \circ T).$$

Ainsi, $Ker(T \circ T \circ T) = {\vec{0}}$. Comme

$$\vec{v} \in \operatorname{Ker} T \Rightarrow \vec{v} \in \operatorname{Ker} (T \circ T \circ T),$$

on obtient dim $\operatorname{Ker} T = 0$.

Exercice 7 (Changements de bases)

Soit $\vec{T}:\mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire donnée par

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 + x_3 \\ 2x_2 + x_3 \\ x_1 + x_2 \end{pmatrix}.$$

Soient E la base canonique de \mathbb{R}^3 et B une base de \mathbb{R}^3 donnée par

$$B = \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

- a) Donner la matrice M qui représente T par rapport aux bases E (de départ) et B (d'arrivée).
- b) Même question pour les bases B (de départ) et E (d'arrivée).
- c) Même question pour les bases B (de départ) et B (d'arrivée).

Sol.: Deux versions : une sans utiliser la théorie sur le changement de base, et une avec.

Sans utiliser la théorie sur le changement de base

a) On note $\vec{e}_1, \vec{e}_2, \vec{e}_3$ les vecteurs de la base canonique E de \mathbb{R}^3 . Par définition, la matrice canonique de l'application T est

$$([T(\vec{e}_1)]_E \quad [T(\vec{e}_2)]_E \quad [T(\vec{e}_3)]_E).$$

On cherche

$$M = ([T(\vec{e}_1)]_B \quad [T(\vec{e}_2)]_B \quad [T(\vec{e}_3)]_B).$$

On va donc chercher les vecteurs cordonnées de $T(\vec{e_1})$, $T(\vec{e_2})$ et $T(\vec{e_3})$ par rapport à la base B. On note $\vec{b_1}$, $\vec{b_2}$, $\vec{b_3}$ les vecteurs de la base B. Commençons par $T(\vec{e_1})$. On

cherche l'unique vecteur
$$\vec{r} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$
 tel que $T(\vec{e}_1) = r_1 \vec{b}_1 + r_2 \vec{b}_2 + r_3 \vec{b}_3$, i.e.

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \vec{r} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \Leftrightarrow \vec{r} = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix} = [T(\vec{e}_1)]_B. \tag{1}$$

De façon similaire, on obtient

$$[T(\vec{e_2})]_B = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}, \qquad [T(\vec{e_3})]_B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Ainsi,

$$M = \left(\begin{array}{ccc} 0 & 2 & 1\\ 3 & -2 & 0\\ -2 & 3 & 0 \end{array}\right).$$

b) On procède de manière identique pour expliciter

$$M = ([T(\vec{b}_1)]_E \quad [T(\vec{b}_2)]_E \quad [T(\vec{b}_3)]_E) = \begin{pmatrix} 3 & 4 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$

Ici les 3 systèmes à résoudre sont très simples car ils font intervenir la matrice identité (matrice dont les colonnes sont les vecteurs de la base canonique E).

c) La matrice M recherchée est ici donnée par

$$M = \left([T(\vec{b}_1)]_B \quad [T(\vec{b}_2)]_B \quad [T(\vec{b}_3)]_B \right).$$

Les 3 systèmes à résoudre font intervenir la même matrice qu'en (1). On obtient

$$M = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & -2 & 0 \end{array}\right).$$

En utilisant la théorie sur le changement de base

a) On commence par prendre les vecteurs de la base de départ et à leur appliquer la transformation T. On obtient

$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},$$

qui sont encore exprimés dans la base canonique E. Il faut maintenant calculer la matrice de passage de la base E à la base B, notée P_{BE} (telle que $[\vec{x}]_B = P_{BE}[\vec{x}]_E$). On sait, du cours, que cette matrice est l'inverse de la matrice de passage de la base B à la base E, notée P_{EB} . Cette dernière est donnée par

$$P_{EB} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

i.e. ses colonnes sont les vecteurs de la base B, exprimés dans la base E. Pour calculer son inverse, on peut utiliser la méthode vue en cours (avec l'identité à droite), ou calculer directement son inverse en résolvant $P_{EB}P_{EB}^{-1}=I_3$, où l'on pose

$$P_{EB}^{-1} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

On résout

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Comme la matrice P_{EB} contient beaucoup de zéros, il sera plus simple de résoudre le système d'équations obtenu que d'utiliser la méthode vue en cours. On obtient facilement que l'inverse est

$$P_{EB}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix} = P_{BE}.$$

On applique alors P_{BE} aux vecteurs obtenus précédemment (qui sont exprimés dans la base E). La matrice M est

$$M = ([P_{BE}\vec{T}(\vec{e}_1)] \quad [P_{BE}\vec{T}(\vec{e}_2)] \quad [P_{BE}\vec{T}(\vec{e}_3)]) = \begin{pmatrix} 0 & 2 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0 \end{pmatrix}.$$

b) On commence par prendre les vecteurs de la base de départ et à leur appliquer la transformation T.

$$T \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \quad T \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},$$

qui sont exprimés dans la base canonique E. La matrice M est

$$M = \begin{pmatrix} 3 & 4 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$

Variante en utilisant la définition de la matrice associée à T. On sait que $T(\overrightarrow{b_i}) = A\overrightarrow{b_i}$ avec $A = ([T(\overrightarrow{e_1})]_E \ [T(\overrightarrow{e_2})]_E \ [T(\overrightarrow{e_3})]_E)$. Ainsi on peut trouver les colonnes de notre matrice cherchée en résolvant

$$([T(\overrightarrow{e_1})]_E \quad [T(\overrightarrow{e_2})]_E \quad [T(\overrightarrow{e_3})]_E)([\overrightarrow{b_1}]_E \quad [\overrightarrow{b_2}]_E \quad [\overrightarrow{b_3}]_E) = (T(\overrightarrow{b_1}) \quad T(\overrightarrow{b_2}) \quad T(\overrightarrow{b_3}))$$

c) On applique P_{BE} aux vecteurs obtenus au point précédent et on obtient la matrice

$$M = ([P_{BE}\vec{T}(\vec{b}_1)] \quad [P_{BE}\vec{T}(\vec{b}_2)] \quad [P_{BE}\vec{T}(\vec{b}_3)]) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & -2 & 0 \end{pmatrix}.$$

Exercice 8 (Rang)

Soit

$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix}$$

Donner une base pour le noyau, l'image, et l'espace engendré par les lignes de A, puis vérifier que l'affirmation du théorème du rang est bien vérifiée.

Sol.: Une forme échelonnée de A est

$$\widetilde{A} = \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

On voit donc des pivots dans les colonnes 1 et 2, ce qui implique que $\operatorname{Im} A \ (= \operatorname{Im} A)$ est engendré par sa première et sa deuxième colonne, donc

$$\left\{ \left(\begin{array}{c} 1\\-1\\5 \end{array} \right), \left(\begin{array}{c} -2\\1\\-3 \end{array} \right) \right\}.$$

est une base de Im A. On obtient le noyau en remarquant que x_3 et x_4 sont libres, et que les autres sont données par $x_1 = x_3 - 5x_4$, $2x_2 = 5x_3 - 6x_4$. Une base de Ker A est donc donnée par

$$\left\{ \begin{pmatrix} 1\\5/2\\1\\0 \end{pmatrix}, \begin{pmatrix} -5\\-3\\0\\1 \end{pmatrix} \right\}.$$

Finalement, puisque Lgn $A = \text{Lgn } \widetilde{A}$, la famille

$$\left\{ \left(\begin{array}{c} 1 \\ 0 \\ -1 \\ 5 \end{array} \right), \left(\begin{array}{c} 0 \\ -2 \\ 5 \\ -6 \end{array} \right) \right\}$$

forme une base de Lgn A.

L'affirmation du théorème du rang est vérifiée, puisque $\dim(\operatorname{Im} A) = 2 = \dim(\operatorname{Lgn} A)$, et que

$$\dim(\operatorname{Ker} A) + \dim(\operatorname{Im} A) = 2 + 2 = 4 \quad (= \#(\operatorname{colonnes} \ \operatorname{de} \ A))$$

Exercice 9 (Application linéaire)

On considère l'application linéaire $T: \mathbb{P}_3 \to \mathbb{P}_2$ définie par

$$T(a+bt+ct^2+dt^3) = (a+b+c+d) + (a+b)t + (c+d)t^2.$$

- a) Trouver la matrice $[T]_{\mathcal{E}\leftarrow\mathcal{E}}$ de l'application T relativement à la base canonique \mathcal{E} de \mathbb{P}_3 (départ) et \mathcal{E} de \mathbb{P}_2 (arrivée).
- b) Trouver la dimension et une base de Im T.
- c) Vérifier que le polynôme $7 + 5t + 2t^2$ est bien dans l'image de T et donner ses coordonnées dans la base trouvée en (b).
- d) Trouver la dimension et une base de KerT.
- e) Vérifier que le polynôme $2 2t 5t^2 + 5t^3$ est bien dans le noyau de T et donner ses coordonnées dans la base trouvée en (d).
- f) L'application T est-elle injective, surjective, ou bijective?

Sol.: Par rapport aux bases canoniques $\mathcal{E} = (1, t, t^2, t^3)$ de \mathbb{P}_3 et $(1, t, t^2)$ de \mathbb{P}_2 , la matrice associée à l'application linéaire T est donnée par

$$[T]_{\mathcal{E}\leftarrow\mathcal{E}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Donc l'image de T est un sous-espace de \mathbb{P}_2 de dimension 2 avec base $\mathcal{B}_{Im} = \{1 + t, 1 + t^2\}$ et le noyau de T est un sous-espace de \mathbb{P}_3 de dimension 2 avec base $\mathcal{B}_{Ker} = \{1 - t, t^2 - t^3\}$. Le polynôme $7 + 5t + 2t^2$ est bien dans l'image de T puisque $T(5 + 2t^2) = 7 + 5t + 2t^2$. Ses coordonnées dans la base \mathcal{B}_{Im} sont

$$\left[7 + 5t + 2t^2\right]_{\mathcal{B}_{Im}} = \begin{pmatrix} 5\\2 \end{pmatrix},$$

puisque

$$7 + 5t + 2t^2 = 5(1+t) + 2(1+t^2) \left(= 5T(1) + 2T(t^2) = T(5+2t^2) \right).$$

Le polynôme $2-2t-5t^2+5t^3$ est bien dans le noyau de T puisque $T(2-2t-5t^2+5t^3)=0$. Ses coordonnées dans la base \mathcal{B}_{Ker} sont

$$\left[2 - 2t - 5t^2 + 5t^3\right]_{\mathcal{B}_{Ker}} = \begin{pmatrix} 2\\ -5 \end{pmatrix},$$

puisque

$$2 - 2t - 5t^2 + 5t^3 = 2(1 - t) - 5(t^2 - t^3).$$

L'application T n'est pas injective car son noyau $Ker(T) \neq \{0\}$. Elle n'est pas surjective car son image $Im(T) \neq \mathbb{P}_2$.

Exercice 10 (Changements de bases)

Soient $\mathcal{B} = (b_1, b_2)$ et $\mathcal{C} = (c_1, c_2)$ deux bases d'un espace vectoriel V. Supposons que

$$b_1 = 6c_1 - 2c_2$$
 et $b_2 = 9c_1 - 4c_2$.

- (a) Calculer la matrice de changement de base $P_{\mathcal{C} \leftarrow \mathcal{B}} = [\mathrm{Id}_V]_{\mathcal{C} \leftarrow \mathcal{B}}$ de \mathcal{B} vers \mathcal{C} .
- (b) Trouver $[x]_{\mathcal{C}}$ pour $x = -3b_1 + 2b_2$ en utilisant le résultat en (a)

Soient $\mathcal{A} = (\vec{a_1}, \vec{a_2})$ et $\mathcal{D} = (\vec{d_1}, \vec{d_2})$ deux bases de \mathbb{R}^2 .

$$\vec{a_1} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}, \quad \vec{a_2} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}, \quad \vec{d_1} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}, \quad \vec{d_2} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}.$$

- (c) Calculer la matrice de changement de base $P_{\mathcal{D}\leftarrow\mathcal{A}}$ de la base \mathcal{A} vers la base \mathcal{D} .
- (d) Calculer la matrice de changement de base $P_{A\leftarrow\mathcal{D}}$ de la base \mathcal{D} vers la base \mathcal{A} .

Sol.:

(a) La matrice de changement de base de $\mathcal B$ à $\mathcal C$ est la matrice dont les colonnes sont les coordonnées des vecteurs de base de la base $\mathcal B$ dans la base $\mathcal C$:

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix}$$

(b) L'équation $x = -3b_1 + 2b_2$ implique que $[x]_{\mathcal{B}} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$. Pour trouver $[x]_{\mathcal{C}}$, il suffit d'utiliser la matrice de changement de base :

$$[x]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [x]_{\mathcal{B}} = \begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

(c) Nous allons utiliser la méthode du court qui consiste à trouver $P_{\mathcal{D}\leftarrow\mathcal{A}}$ à partir des matrices $P_{\mathcal{E}\leftarrow\mathcal{A}}$ et $P_{\mathcal{E}\leftarrow\mathcal{D}}$. Nous avons

$$P_{\mathcal{D}\leftarrow\mathcal{A}} = P_{\mathcal{D}\leftarrow\mathcal{E}}P_{\mathcal{E}\leftarrow\mathcal{A}} = P_{\mathcal{E}\leftarrow\mathcal{D}}^{-1}P_{\mathcal{E}\leftarrow\mathcal{A}} = \begin{pmatrix} 1 & -2 \\ -5 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 7 & -3 \\ 5 & -1 \end{pmatrix}$$
$$= \frac{1}{-8} \begin{pmatrix} 2 & 2 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 7 & -3 \\ 5 & -1 \end{pmatrix} = \begin{pmatrix} -3 & 1 \\ -5 & 2 \end{pmatrix}$$

On aurait aussi pu réduire la matrice augmentée suivante

$$\left(\vec{d_1} \ \vec{d_2} \middle| \vec{a_1} \ \vec{a_2} \right) = \left(P_{\mathcal{E} \leftarrow \mathcal{D}} \middle| P_{\mathcal{E} \leftarrow \mathcal{A}} \right) = \left(\begin{array}{cc} 1 & -2 & 7 & -3 \\ -5 & 2 & 5 & -1 \end{array} \right) \sim \left(I_2 \middle| P_{\mathcal{D} \leftarrow \mathcal{A}} \right).$$

(d) Pour trouver $P_{A\leftarrow D} = (Id)_D^A$, il faut se rappeler que

$$P_{\mathcal{A}\leftarrow\mathcal{D}} = P_{\mathcal{D}\leftarrow\mathcal{A}}^{-1} = \begin{pmatrix} -2 & 1\\ -5 & 3 \end{pmatrix}.$$

Exercice 11 (QCM)

a) Soit
$$A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix}$$
.

- \square Ker A est un sous-espace de \mathbb{R}^4 de dimension 0.
- \square Ker A est un sous-espace de \mathbb{R}^2 de dimension 0.
- \square Ker A est un sous-espace de \mathbb{R}^4 de dimension 1.
- \square Ker A est un sous-espace de \mathbb{R}^2 de dimension 1.
- b) On considère les polynômes $p(t) = (1 t)(1 + t) = 1 t^2$ et $q(t) = (1 + t)(1 + t) = 1 + 2t + t^2$ de \mathbb{P}_2 .
 - \square Les polynômes p et q sont linéairement indépendants.
 - \square Les polynômes p et q forment une base de \mathbb{P}_2 .
 - \square Le polynôme q-p est le polynôme nul.
 - $\Box (1+t)p (1-t)q$ est une combinaison linéaire de p et q.
- c) Soit W l'hyperplan dans \mathbb{R}^6 donné par l'équation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$. On

considère les vecteurs
$$\overrightarrow{a} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \overrightarrow{b} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \text{ et } \overrightarrow{c} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ -1 \\ -2 \\ 3 \end{pmatrix}.$$

 \square On peut complèter $\{\overrightarrow{a}, \overrightarrow{b}\}$ en une base de W composée de 5 vecteurs.

- \Box On peut complèter $\{\overrightarrow{a},\overrightarrow{b}\}$ en une base de W composée de 6 vecteurs.
- \Box On peut complèter $\{\overrightarrow{a},\overrightarrow{c}\}$ en une base de W composée de 5 vecteurs.
- \square On peut complèter $\{\overrightarrow{a}, \overrightarrow{c}\}$ en une base de W composée de 6 vecteurs.
- d) Soit V un espace vectoriel et v_1, \ldots, v_k des vecteurs de V.
 - \square Si la famille $\{v_1, \ldots, v_k\}$ est libre, alors $\dim V = k$.
 - \square Si la famille $\{v_1, \ldots, v_k\}$ est libre, alors $\dim V \geqslant k$.
 - \square Si la famille $\{v_1, \ldots, v_k\}$ engendre l'espace vectoriel V, alors $\dim V = k$.
 - \square Si la famille $\{v_1,\ldots,v_k\}$ engendre l'espace vectoriel V, alors $\dim V \geqslant k$.
- e) Soit Tr: $M_{2\times 2} \to \mathbb{R}$ l'application linéaire "trace" définie par

$$\operatorname{Tr}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d.$$

- \square Le noyau de Tr est un sous-espace de $M_{2\times 2}$ de dimension 1.
- \square Le noyau de Tr est un sous-espace de $M_{2\times 2}$ de dimension 2.
- \square Le noyau de Tr est un sous-espace de $M_{2\times 2}$ de dimension 3.
- \square Le noyau de Tr est un sous-espace de $M_{2\times 2}$ de dimension 4.
- f) Soit Tr: $M_{2\times 2} \to \mathbb{R}$ l'application linéaire "trace" définie à la question f. Les matrices suivantes forment une base du noyau de Tr :
 - $\square \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ et } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$
 - $\square \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ et } \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.$
 - $\square \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ et } \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}.$
 - $\square \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \text{ et } \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$

Sol.:

a) \square KerA est un sous-espace de \mathbb{R}^2 de dimension 1.

La matrice A représente une application linéaire $\mathbb{R}^2 \to \mathbb{R}^4$. Ainsi KerA est un sousespace de \mathbb{R}^2 , pas de \mathbb{R}^4 . Pour trouver sa dimension il faut échelonner la matrice A. Comme toutes les lignes sont proportionnelles le noyau de A est la solution de l'équation -x + 3y = 0, une droite dans le plan.

b) \square Les polynômes p et q sont linéairement indépendants.

En effet, bien que (1+t)p + (1-t)q = 0, ce n'est pas une combinaison **linéaire**, car dans une combinaison linéaire seuls des coefficients réels sont permis, pas des coefficients polynomiaux. Malgré cela ils ne sont pas assez nombreux pour former une base de \mathbb{P}_2 . Enfin, le polynôme q-p s'annule en 0, mais ce n'est pas le polynôme nul, c'est $2t + 2t^2$.

c) \square On peut compléter $\{\overrightarrow{a}, \overrightarrow{c}\}$ en une base de W composée de 5 vecteurs.

Les vecteurs \overrightarrow{a} et \overrightarrow{b} sont proportionnels, ils sont donc linéairement dépendants et ne peuvent être complétés en une base. Par contre les vecteurs \overrightarrow{a} et \overrightarrow{c} sont linéairement indépendants, ils peuvent donc être complétées en une base de W. Le sous-espace W est donné par une équation à six inconnues. Cinq d'entre elles sont des inconnues secondaires qui jouent le rôle de paramètres, la dimension de W est donc 5.

d) \square Si la famille $\{v_1, \ldots, v_k\}$ est libre, alors $dimV \geqslant k$.

Si la famille $\{v_1, \ldots, v_k\}$ est libre, on peut compléter cette famille en une base et cette base aura donc au moins k éléments. Autrement dit, la dimension de V est k au minimum $(\dim V \geqslant k)$. Alors que, si la famille $\{v_1, \ldots, v_k\}$ engendre V, on peut extraire une base de cette famille et cette base aura donc au plus k éléments. Autrement dit, la dimension de V est k au maximum $(\dim V \leqslant k)$.

e) \square Le noyau de Tr est un sous-espace de $M_{2\times 2}$ de dimension 3.

Pour avoir $\operatorname{Tr}\begin{pmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}\end{pmatrix} = 0$, il faut que a + d = 0, autrement dit que d = -a. Ainsi le noyau de l'application Tr correspond au sous-espace vectoriel de $M_{2\times 2}$

$$\left\{ \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

qui est de dimension 3.

$$f) \square \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} et \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.$$

Comme le noyau de Tr est de dimension 3, par la question f., il faut 3 matrices de ce sous-espace pour l'engendrer. De plus, les trois matrices ci-dessus sont linéairement indépendantes et appartiennent au noyau de Tr. Elles forment donc une base du noyau de Tr.

Exercice 12 (VF)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

		V	F,
a)	Le plan défini dans \mathbb{R}^3 par $z=2$ est un sous-espace vectoriel de \mathbb{R}^3 .		
b)	$\operatorname{Ker}(A) = \{\vec{0}\}\ \text{si et seulement si l'application } \vec{x} \mapsto A\vec{x} \text{ est surjective.}$		
c)	Soit V un espace vectoriel et $u \in V$. Alors l'opposé $-u$ de u est unique et $(-1)u \in V$.	-u	=
d)	Soit A une matrice de taille $m \times n$, alors $\operatorname{Ker}(A)$ est un sous-espace vectoriel	$de \mathbb{F}$	\mathbb{R}^n .

Sol.: Vrai:(c), (d). Faux:(a), (b).