Exercices — Série 13

Mots-clés: matrices symétriques, diagonalisation orthogonale, formes quadratiques.

Question 1 Soit A une matrice symétrique de taille $n \times n$.

- a) Montrer que $(Av) \cdot u = v \cdot (Au)$ pour tous $u, v \in \mathbb{R}^n$.
- b) Donner une matrice B de taille 2×2 telle que $(Bv) \cdot u \neq v \cdot (Bu)$ pour certains $u, v \in \mathbb{R}^2$.

Question 2 Soit A une matrice symétrique inversible. Montrer que l'inverse de A est aussi symétrique.

Question 3 Diagonaliser les matrices suivantes sous la forme $P^TAP = D$, avec P une matrice orthogonale.

a)
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Question 4 Évaluer la forme quadratique $x^T A x$ si

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \quad \text{et} \quad x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Question 5 Donner la matrice symétrique B de taille 3×3 telle que la forme quadratique $q: \mathbb{R}^3 \to \mathbb{R}$ puisse s'écrire sous la forme $q(x) = x^T B x$ et déterminer le changement de variable x = Py qui transforme la forme quadratique en une forme diagonale $y^T D y$ (indiquer les axes principaux de la forme quadratique) dans les cas suivants.

a)
$$q(x) = 3x_1^2 + 3x_2^2 + 2x_1x_2$$
,

b)
$$q(x) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$

c)
$$q(x) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3$$
.

Question 6 Soit $A=\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ et $q(x)=x^TAx$ sa forme quadratique associée. Montrez que

- a) q est définie positive si det(A) > 0 et a > 0;
- b) q est définie négative si det(A) > 0 et a < 0;
- c) q est non définie si det(A) < 0.

Question 7 Déterminer si les formes quadratiques suivantes sont définies positives, définies négatives, ou indéfinies.

a)
$$Q(x) = 9x_1^2 + 3x_2^2 - 8x_1x_2, x \in \mathbb{R}^2$$
.

b)
$$Q(x) = -5x_1^2 - 2x_2^2 + 4x_1x_2, x \in \mathbb{R}^2$$
.

c)
$$Q(x) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 6x_2x_3 + 6x_1x_3, x \in \mathbb{R}^3$$
.

Question 8 Soit A une matrice symétrique inversible. Montrez que si la forme quadratique $x^T A x$ est définie positive, la forme quadratique $x^T A^{-1} x$ l'est aussi.

Question 9 Pour les formes quadratiques de la question 5, déterminer

$$\max\{x^T B x; \|x\| = 1\}, \quad \min\{x^T B x; \|x\| = 1\},$$

et trouver un vecteur unitaire qui réalise le maximum ou le minimum de la forme quadratique.

Question 10 Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a) Si A est une matrice de taille $n \times n$ telle que 0 est l'unique valeur propre de

A, alors A = 0.

□ VRAI □ FAUX

b) Si A est une matrice symétrique de taille $n \times n$ telle que 0 est l'unique valeur propre de A, alors A=0.

VRAI FAUX

c) La matrice d'une forme quadratique est symétrique.

VRAI FAUX

d) Une forme quadratique strictement positive satisfait $Q(x) > 0, \forall x \in \mathbb{R}^n$.

VRAI FAUX

e) Si les valeurs propres d'une matrice symétrique A sont toutes strictement positives, alors la forme quadratique x^TAx est définie positive.

VRAI FAUX

f) Si les coefficients de A (symétrique) sont tous ≥ 0 alors $q(x) = x^t A x$ est définie positive.

VRAI FAUX

Question 11 Soit $A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}$. Diagonaliser A en base orthonormée.