Exercices — Série 12

Mots-clés: Procédé de Gram-Schmidt, factorisation QR, méthode des moindres carrés, droite de régression.

Question 1

Considérons les vecteurs de \mathbb{R}^4 suivants

$$v = \begin{pmatrix} 2\\4\\0\\-1 \end{pmatrix}, \quad w_1 = \begin{pmatrix} 2\\0\\-1\\-3 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 5\\-2\\4\\2 \end{pmatrix}.$$

- a) Trouver la meilleure approximation de v par un vecteur de la forme $\alpha w_1 + \beta w_2$.
- b) Calculer la distance entre v et Vect $\{w_1, w_2\}$.

Question 2 Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases des sous-espaces vectoriels de $W \subseteq \mathbb{R}^n$ suivants.

a)
$$W = \text{Vect}\{w_1, w_2\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

b)
$$W = \text{Vect}\{w_1, w_2, w_3\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $w_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

c) Donner une base orthonormale pour a) et b).

Question 3 Calculer la décomposition QR des matrices suivantes.

$$A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 2 & -1 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}.$$

Question 4 Déterminer la solution au sens des moindres carrés de Ax = b

a) en utilisant l'équation normale lorsque

i)
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$,

ii)
$$A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix},$$

iii)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 6 \end{pmatrix};$$

b) en utilisant la méthode QR lorsque

i)
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix},$$

ii)
$$A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Question 5

- a) Montrer que si Q est une matrice orthogonale, alors Q^T est aussi une matrice orthogonale.
- b) Montrer que si U,V sont des matrices $n\times n$ orthogonales, alors UV est aussi une matrice orthogonale.
- c) Montrer que toute valeur propre réelle λ d'une matrice orthogonale Q vérifie $\lambda=\pm 1.$
- d) Soit Q une matrice orthogonale de taille $n \times n$. Soit $\{u_1, \ldots, u_n\}$ une base orthogonale de \mathbb{R}^n . Montrer que $\{Qu_1, \ldots, Qu_n\}$ est aussi une base orthogonale de \mathbb{R}^n .

Question 6

On considère les points

α	i	2	5	6	8
y	l_i	1	2	3	3

On suppose que la relation entre les x_i et les y_i suit une loi y = ax + b. Calculer a et b au sens des moindres carrés.

Question 7 Les données suivantes décrivent le potentiel dans un câble électrique en fonction de la température du câble.

i	$T_i \ [^{\circ}C]$	U_i [V]
1	0	-2
2	5	-1
3	10	0
4	15	1
5	20	2
6	25	4

On suppose que le potentiel suit la loi $U=a+bT+cT^2$. Calculer a,b,c au sens des moindres carrés.

Question 8

Indiquer pour chaque énoncé s'il est vrai ou faux.

a)	L'ensemble des solutions au sens des moindres carrés de $A\vec{x}=\vec{b}$ coïncide avec l'ensemble non vide des solutions de l'équation normale $A^TA\vec{x}=A^T\vec{b}$.
	☐ VRAI ☐ FAUX
b)	Soit A une matrice $m \times n$ et $b \in \mathbb{R}^m$. Le problème général des moindres carrés consiste à trouver un $x \in \mathbb{R}^n$ qui rend Ax aussi proche que possible de b .
	☐ VRAI ☐ FAUX
c)	Soit A une matrice $n \times n$ qui peut se factoriser selon la factorisation QR comme $A = QR$. Alors, $Q^TA = R$.
	☐ VRAI ☐ FAUX
d)	Soit W un sous-espace vectoriel de \mathbb{R}^n . Soit \hat{y} la projection orthogonale de $y \in \mathbb{R}^n$ sur W . Alors \hat{y} dépend du choix de la base de W .
	☐ VRAI ☐ FAUX
e)	Tout ensemble orthonormal de \mathbb{R}^n est linéairement dépendant.
	☐ VRAI ☐ FAUX
f)	Soit W un sous-espace vectoriel de \mathbb{R}^n . Si $v \in W \cap W^{\perp}$, alors $v = 0$.
	☐ VRAI ☐ FAUX