Exercices — Série 12

Mots-clés: Procédé de Gram-Schmidt, factorisation QR, méthode des moindres carrés, droite de régression.

Question 1

Considérons les vecteurs de \mathbb{R}^4 suivants

$$v = \begin{pmatrix} 2\\4\\0\\-1 \end{pmatrix}, \quad w_1 = \begin{pmatrix} 2\\0\\-1\\-3 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 5\\-2\\4\\2 \end{pmatrix}.$$

- a) Trouver la meilleure approximation de v par un vecteur de la forme $\alpha w_1 + \beta w_2$.
- b) Calculer la distance entre v et $Vect\{w_1, w_2\}$.

Solution:

a) On pose $W = \text{Vect}\{w_1, w_2\}$. On remarque que les vecteurs w_1 et w_2 sont orthogonaux. On peut ainsi facilement calculer la projection orthogonale grâce à la formule $\text{proj}_W(v) = \frac{v \cdot w_1}{w_1 \cdot w_1} w_1 + \frac{v \cdot w_2}{w_2 \cdot w_2} w_2$ ce qui nous fournit directement les

coefficients
$$\alpha$$
 et β . On trouve $\alpha = 1/2$ et $\beta = 0$ et donc $\operatorname{proj}_W(v) = \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}$.

b) La distance entre v et W est donnée par $||v - \operatorname{proj}_W(v)|| = \sqrt{\frac{35}{2}}$.

Question 2 Appliquer la méthode de Gram-Schmidt pour orthogonaliser les bases des sous-espaces vectoriels de $W \subseteq \mathbb{R}^n$ suivants.

a)
$$W = \text{Vect}\{w_1, w_2\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

b)
$$W = \text{Vect}\{w_1, w_2, w_3\}$$
, avec $w_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $w_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

c) Donner une base orthonormale pour a) et b).

Solution:

- a) La méthode de Gram-Schmidt donne $u_1 = w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = w_2 \frac{w_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1/3 \\ 2/3 \\ -1/3 \end{pmatrix}.$
- b) La méthode de Gram-Schmidt donne $u_1 = w_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$,

$$u_2 = w_2 - \frac{w_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1/3 \\ 0 \\ 1/3 \\ -1/3 \end{pmatrix},$$

$$u_3 = w_3 - \frac{w_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{w_3 \cdot u_2}{u_2 \cdot u_2} u_2 = \begin{pmatrix} -1/5 \\ 2/5 \\ -2/5 \\ -1/5 \end{pmatrix}.$$

c) Pour a):
$$\frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \frac{u_2}{\|u_2\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\-1 \end{pmatrix}.$$

Pour b):
$$\frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{15}} \begin{pmatrix} 1\\3\\2\\1 \end{pmatrix}$$
, $\frac{u_2}{\|u_2\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\0\\1\\-1 \end{pmatrix}$, $\frac{u_3}{\|u_3\|} = \frac{1}{\sqrt{10}} \begin{pmatrix} -1\\2\\-2\\-1 \end{pmatrix}$.

Question 3 Calculer la décomposition QR des matrices suivantes.

$$A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 2 & -1 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}.$$

Solution:

a) On applique la méthode de Gram-Schmidt à
$$w_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
 et $w_2 = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$,

puis on les normalise. On obtient
$$u_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$$
 et $u_2 = \begin{pmatrix} -1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$, d'où $Q = \begin{pmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{pmatrix}$, et $R = Q^T A = \begin{pmatrix} 3 & 5 \\ 0 & 1 \end{pmatrix}$.

b) On trouve B = QR avec

$$Q = \begin{pmatrix} 1/\sqrt{3} & -2/\sqrt{6} & 0\\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2}\\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix}, \quad R = \begin{pmatrix} \sqrt{3} & 5/\sqrt{3} & -1/\sqrt{3}\\ 0 & \sqrt{6}/3 & \sqrt{6}/3\\ 0 & 0 & \sqrt{2} \end{pmatrix}.$$

c) On trouve
$$C = QR$$
 avec $Q = \begin{pmatrix} 0 & 0 \\ 1/\sqrt{2} & 3/\sqrt{22} \\ 0 & -2/\sqrt{22} \\ -1/\sqrt{2} & 3/\sqrt{22} \end{pmatrix}$, $R = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{11/2} \end{pmatrix}$.

Question 4 Déterminer la solution au sens des moindres carrés de Ax = b

a) en utilisant l'équation normale lorsque

i)
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix},$$
ii) $A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix},$
iii) $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ 6 \\ 6 \end{pmatrix};$

b) en utilisant la méthode QR lorsque

i)
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
,
ii) $A = \begin{pmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Solution:

- a) en utilisant l'équation normale.
 - i) L'équation normale $A^TAx = A^Tb$ est $\begin{pmatrix} 12 & 8 \\ 8 & 10 \end{pmatrix} x = \begin{pmatrix} 10 \\ 10 \end{pmatrix}$, elle a pour solution $x = \begin{pmatrix} 5/14 \\ 5/7 \end{pmatrix}$.

ii)
$$A^TA=\left(\begin{array}{cc} 3 & 3 \\ 3 & 11 \end{array} \right),\, A^Tb=\left(\begin{array}{cc} 6 \\ 14 \end{array} \right),\, x=\left(\begin{array}{c} 1 \\ 1 \end{array} \right).$$

iii)
$$A^T A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, $A^T b = \begin{pmatrix} 1 \\ 14 \\ -5 \end{pmatrix}$, $x = \begin{pmatrix} 1/3 \\ 14/3 \\ -5/3 \end{pmatrix}$.

- b) en utilisant la méthode QR.
 - i) Les colonnes de la matrice A sont linéairement indépendantes, donc décomposer A selon A = QR et résoudre $Rx = Q^Tb$ est équivalent à résoudre l'équation normale. La décomposition est donnée par

$$Q = \begin{pmatrix} 0 & 0 \\ 1/\sqrt{2} & 3/\sqrt{22} \\ 0 & -2/\sqrt{22} \\ -1/\sqrt{2} & 3/\sqrt{22} \end{pmatrix}, \qquad R = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{11/2} \end{pmatrix}.$$

L'approximation x au sens des moindres carrés est la solution du système $Rx = Q^T b$, où $Q^T b = \begin{pmatrix} 0 \\ -2/\sqrt{22} \end{pmatrix}$. Ainsi, $x = \begin{pmatrix} 1/11 \\ -2/11 \end{pmatrix}$.

ii) Ici, comme avant, les colonnes de A sont linéairement indépendantes, donc décomposer A selon A=QR et résoudre $Rx=Q^Tb$ est équivalent à résoudre l'équation normale. La décomposition a également été calculée à l'exercice ci-dessus (question a)) et est donnée par

$$Q = \begin{pmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{pmatrix}, \qquad R = \begin{pmatrix} 3 & 5 \\ 0 & 1 \end{pmatrix}.$$

On trouve
$$Q^T b = \begin{pmatrix} 1/3 \\ -2/3 \end{pmatrix}$$
, $x = \begin{pmatrix} 11/9 \\ -2/3 \end{pmatrix}$.

Question 5

- a) Montrer que si Q est une matrice orthogonale, alors Q^T est aussi une matrice orthogonale.
- b) Montrer que si U, V sont des matrices $n \times n$ orthogonales, alors UV est aussi une matrice orthogonale.
- c) Montrer que toute valeur propre réelle λ d'une matrice orthogonale Q vérifie $\lambda = \pm 1$.
- d) Soit Q une matrice orthogonale de taille $n \times n$. Soit $\{u_1, \ldots, u_n\}$ une base orthogonale de \mathbb{R}^n . Montrer que $\{Qu_1, \ldots, Qu_n\}$ est aussi une base orthogonale de \mathbb{R}^n .

Solution:

- a) Par définition, une matrice orthogonale Q de taille $n \times n$ vérifie $Q^TQ = I_n$ et $QQ^T = I_n$. Comme $Q = (Q^T)^T$, on a $Q^T(Q^T)^T = I_n$ et $(Q^T)^TQ^T = I_n$, ce qui montre que Q^T est aussi orthogonale.
- b) En utilisant $VV^T = UU^T = I_n$, on a $UV(UV)^T = UVV^TU^T = UU^T = I_n$. De même, on peut vérifier que $(UV)^T UV = I_n$, donc UV est une matrice orthogonale.
- c) Une matrice orthogonale conserve la norme de tout vecteur x: On a $\|Qx\|^2 = (Qx)^T(Qx) = x^TQ^TQx = x^Tx = \|x\|^2$. Ensuite, si $x \neq 0$ est un vecteur propre associé à $\lambda \in \mathbb{R}$, on a $\|x\| = \|Qx\| = \|\lambda x\| = |\lambda| \|x\|$. Comme $\|x\| \neq 0$, on obtient $|\lambda| = 1$, ainsi $\lambda = \pm 1$.
- d) On calcule pour tous i, j:

$$Qu_i \cdot Qu_j = (Qu_i)^T Qu_j = u_i^T Q^T Qu_j = u_i^T u_j = u_i \cdot u_j.$$

Comme les u_i sont orthogonaux entre eux, ceci montre que $\{Qu_1, \ldots, Qu_n\}$ est orthogonale et constituée de vecteurs non nuls (de normes $||Qu_i|| = ||u_i||$).

Il reste à montrer que $\{Qu_1, \ldots, Qu_n\}$ est une base.

Méthode 1 : Comme Q est inversible (d'inverse Q^T), Q transforme les bases en bases, donc $\{Qu_1, \ldots, Qu_n\}$ est une base.

Méthode 2 : Comme la famille $\{Qu_1, \ldots, Qu_n\}$ est orthogonale et constituée de vecteurs non nuls, elle est automatiquement linéairement indépendante. Comme elle comporte n vecteurs, c'est une base de \mathbb{R}^n .

Remarque: si $\{u_1, ..., u_n\}$ est une base orthonormée, alors $||Qu_i|| = 1$, et $\{Qu_1, ..., Qu_n\}$ est aussi une base orthonormée.

Question 6

On considère les points

x_i	2	5	6	8
y_i	1	2	3	3

On suppose que la relation entre les x_i et les y_i suit une loi y = ax + b. Calculer a et b au sens des moindres carrés.

Solution: Le système linéaire correspondant est $A \begin{pmatrix} a \\ b \end{pmatrix} = y$ où A est donnée

par
$$A = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 5 & 1 \\ 6 & 1 \\ 8 & 1 \end{pmatrix}$$
, et $y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 3 \end{pmatrix}$. L'équation

normale correspondante est $A^TA\begin{pmatrix} a \\ b \end{pmatrix} = A^Ty$. On obtient la solution $\begin{pmatrix} a \\ b \end{pmatrix} =$

$$\left(\begin{array}{c} \frac{9}{25} \\ \frac{9}{25} \end{array}\right) = \left(\begin{array}{c} 0.36 \\ 0.36 \end{array}\right).$$

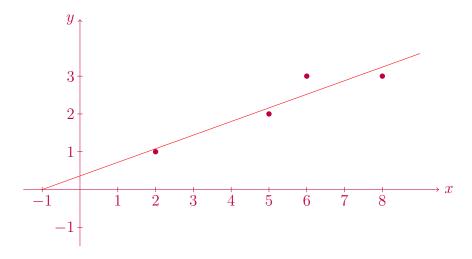


Figure: les points de la donnée et la droite de régression en rouge.

Question 7 Les données suivantes décrivent le potentiel dans un câble électrique en fonction de la température du câble.

i	$T_i \ [\circ C]$	U_i [V]
1	0	-2
2	5	-1
3	10	0
4	15	1
5	20	2
6	25	4

On suppose que le potentiel suit la loi $U = a + bT + cT^2$. Calculer a, b, c au sens des moindres carrés.

Solution: Le système linéaire s'écrit
$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = U$$
 avec $U = \begin{pmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 4 \end{pmatrix}$

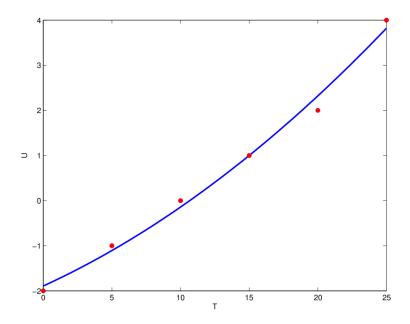
et A est donnée par

$$A = \begin{pmatrix} 1 & T_1 & T_1^2 \\ 1 & \vdots & \vdots \\ 1 & & & \\ 1 & & & \\ 1 & \vdots & \vdots \\ 1 & T_6 & T_c^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 5 & 25 \\ 1 & 10 & 100 \\ 1 & 15 & 225 \\ 1 & 20 & 400 \\ 1 & 25 & 625 \end{pmatrix}.$$

Pour résoudre ce système et trouver a,b,c au sens des moindres carrés, on considère l'équation normale $A^TA\begin{pmatrix} a \\ b \\ c \end{pmatrix} = A^TU$. Après calculs on trouve

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -\frac{53}{28} \\ \frac{39}{280} \\ \frac{1}{280} \end{pmatrix} \approx \begin{pmatrix} -1.89 \\ 0.139 \\ 0.00357 \end{pmatrix}.$$

Le graphique suivant montre les données (en rouge) et la courbe d'interpolation (bleue) obtenue au sens des moindres carrés.



Question 8

Indiquer pour chaque énoncé s'il est vrai ou faux.

a) L'ensemble des solutions au sens des moindres carrés de $A\vec{x} = \vec{b}$ coïncide avec l'ensemble non vide des solutions de l'équation normale $A^TA\vec{x} = A^T\vec{b}$.

VRAI FAUX

b) Soit A une matrice $m \times n$ et $b \in \mathbb{R}^m$. Le problème général des moindres carrés consiste à trouver un $x \in \mathbb{R}^n$ qui rend Ax aussi proche que possible de b.

VRAI FAUX

c) Soit A une matrice $n \times n$ qui peut se factoriser selon la factorisation QR comme A=QR. Alors, $Q^TA=R$.

VRAI FAUX

d) Soit W un sous-espace vectoriel de \mathbb{R}^n . Soit \hat{y} la projection orthogonale de $y \in \mathbb{R}^n$ sur W. Alors \hat{y} dépend du choix de la base de W.

VRAI FAUX

e) Tout ensemble orthonormal de \mathbb{R}^n est linéairement dépendant.

VRAI FAUX

f) Soit W un sous-espace vectoriel de \mathbb{R}^n . Si $v \in W \cap W^{\perp}$, alors v = 0.

VRAI FAUX

Solution: Vrai: a), b), c), f). Faux: d), e).

a) Vrai. Posons $\hat{b} = \operatorname{proj}_{\operatorname{Im}(A)}(b)$ la projection orthogonale de b sur l'espace des colonnes de A (c'est-à-dire l'image de A). Comme le système $Ax = \hat{b}$ est compatible, il admet au moins une solution \hat{x} , et un vecteur \hat{x} vérifie $A\hat{x} = \hat{b}$ si et seulement si \hat{x} est solution au sens des moindres carrés de Ax = b. Soit donc \hat{x} tel que $A\hat{x} = \hat{b}$ et montrons que $A^TA\hat{x} = A^Tb$. Comme \hat{b} est le projeté orthogonal de b sur $\mathbb{I} > (A)$ on a que $b - \hat{b}$ est orthogonal à toute colonne a_i de A. Ainsi $a_i \cdot (b - \hat{b}) = 0$ et comme $(a_i)^T$ sont les lignes de A^T on obtient que $A^T(b - \hat{b}) = 0$ ou encore $A^Tb - A^TA\hat{x} = 0$ ce qui donne $A^TA\hat{x} = A^Tb$.

Réciproquement, si \hat{x} vérifie $A^TA\hat{x}=A^Tb$ alors $A^T(b-A\hat{x})=0$ et donc

 $b-A\hat{x}$ est orthogonal aux lignes de A^T c'est-à-dire aux colonnes de A. Donc $b-A\hat{x}$ est ortgogonal à $\mathrm{Im}(A)$ et $b=A\hat{x}+(b-A\hat{x})$ donne une décomposition de b en somme d'un vecteur de $\mathrm{Im}(A)$ et un vecteur orthogonal à $\mathrm{Im}(A)$. Par unicité d'une telle décomposition on a que $A\hat{x}$ est le projeté orthogonal de b sur $\mathrm{Im}(A)$ c'est-à-dire $A\hat{x}=\hat{b}$ et \hat{x} est solution aux sens des moindres carrés.

- b) Vrai. Par définition d'une solution au sens des moindres carrés, il s'agit de trouver (au moins) un $\vec{x} \in \mathbb{R}^n$ tel que $\left\| A\vec{x} \vec{b} \right\|$ soit le plus petit possible.
- c) Vrai. Puisque A=QR avec Q orthogonale (c'est-à-dire $Q^TQ=I_n$) on a que $Q^TA=Q^TQR=R$.
- d) Faux. Nous avons vu en classe que la projection orthogonale sur un sous-espace vectoriel W ne dépend pas de la base orthogonale de W que l'on choisit.
- e) Faux. Un ensemble orthonormal est constitué de vecteurs non nuls et orthogonaux deux à deux et on a démontré en classe que des vecteurs orthogonaux et non-nuls sont linéairement indépendants.
- f) Vrai. Soit $v \in W \cap W^T$ alors $v \cdot v = 0$ ce qui implique que v = 0.