Exercices — Série 11

Mots-clés: produit scalaire, norme, orthogonalité, orthogonal d'un sous-espace vectoriel, bases orthogonales/orthonormées, projections/matrices orthogonales.

Question 1

a) Soient
$$u = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$
, $v = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $w = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}$. Calculer
$$u \cdot v, \quad v \cdot w, \quad \frac{u \cdot w}{\|v\|}, \quad \frac{1}{w \cdot w}w, \quad \frac{u \cdot w}{\|v\|}v.$$

- b) Calculer la distance entre u et v et la distance entre u et w.
- c) Calculer les vecteurs unitaires correspondant à u, v, w (pointant dans la même direction que le vecteur original).

Question 2 Soit $v = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ et $W = \text{Vect}\{v\}$. Donner l'ensemble W^{\perp} des

vecteurs orthogonaux à v. Est-ce que W^{\perp} est un sous-espace vectoriel de \mathbb{R}^3 ? Si oui, de quelle dimension?

Question 3

- a) Décrire l'ensemble des vecteurs de \mathbb{R}^3 qui sont orthogonaux à $e_1 = (1,0,0)$, puis à $e_2 = (0,1,0)$, et enfin simultanément à e_1 et e_2 . Idem avec e_1 et $e_3 = (0,0,1)$, puis e_2 et e_3 . Combien il y a-t-il de vecteurs orthogonaux à e_1 , e_2 et e_3 simultanément?
- b) Trouver la projection orthogonale p du vecteur a=(2,2,2) sur la droite engendrée par le vecteur b=(-1,-2,-3).
- c) Trouver la distance du vecteur a à la droite engendrée par b.
- d) Montrer que $||p|| = ||a|| |\cos \theta|$, où θ est l'angle formé par a et b.

Question 4 Soit $A = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & 3 \\ -1 & 1 & 4 \end{pmatrix}$ et U = Ker(A). Alors U^{\perp} est égal à

 \square Lgn(A) \square Ker(A) \square Im(A) \square \mathbb{R}^3

Question 5 Soient $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \in \mathbb{R}^3$.

a) Les vecteurs u_1 et u_2 sont orthogonaux.

VRAI FAUX

b) La projection orthogonale $\operatorname{proj}_W(v)$ de v sur $W = \operatorname{Vect}\{u_1, u_2\}$ est égale à

 $\square \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \square \begin{pmatrix} 7/4 \\ 1/4 \\ 1 \end{pmatrix} \qquad \square \begin{pmatrix} 7/2 \\ 1/2 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix}$

c) Dans la décomposition $v=z+\operatorname{proj}_W(v),$ où $z\in W^\perp,\,z=$

 $\square \begin{pmatrix} 1/2 \\ 1/2 \\ -1 \end{pmatrix} \qquad \square \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \qquad \square \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \qquad \square \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$

Question 6

Soient les vecteurs $v = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $w_1 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. Soit w la meilleure approximation de v par un vecteur de la forme $\alpha w_1 + \beta w_2$. Alors $w = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

 $\square \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix} \qquad \square \begin{pmatrix} -4/3 \\ -1/3 \\ -5/3 \end{pmatrix} \qquad \square \begin{pmatrix} 2/3 \\ 1/3 \\ 5/3 \end{pmatrix} \qquad \square \begin{pmatrix} 4/3 \\ 1/3 \\ 5/3 \end{pmatrix}$

Question 7

- a) Soit x un vecteur de \mathbb{R}^3 . Déterminer le cosinus des angles formés par x avec les axes de coordonnées.
- b) En déduire l'ensemble de tous les vecteurs de \mathbb{R}^3 qui forment le même angle avec les trois axes de coordonnées.
- c) Écrire l'inégalité de Cauchy-Schwarz pour les vecteurs (a, b, c) et (1, 1, 1) de \mathbb{R}^3 et en déduire que pour tous nombres réels a, b et c on a

$$(a+b+c)^2 \le 3(a^2+b^2+c^2).$$

d) Soit x un vecteur de \mathbb{R}^3 . Notons par α , β et γ les angles formés par x avec les axes de coordonnées. En utilisant les points antérieurs, démontrer qu'on a les inégalités

$$-\sqrt{6} \le \sin(\alpha) + \sin(\beta) + \sin(\gamma) \le \sqrt{6}.$$

Soient (u_1, \ldots, u_n) et (v_1, \ldots, v_n) deux bases orthonormales de \mathbb{R}^n . On définit les matrices de taille $n \times n$, $U = (u_1 | \dots | u_n)$ et $V = (v_1 | \dots | v_n)$. Montrer que $U^TU = I_n$, $V^TV = I_n$ et que UVest inversible.

Soit $A = \begin{pmatrix} \sqrt{2} & -\sqrt{3} & 1\\ \sqrt{2} & \sqrt{3} & 1\\ \sqrt{2} & 0 & -2 \end{pmatrix}$. Alors Question 9

- A n'est pas inversible $\frac{A}{\sqrt{a}}$ est orthogonale
- \bigcap A est orthogonale $\frac{A}{\sqrt{6}}$ est orthogonale

-	Question 10 Indiquer pour chaquerièvement votre réponse.	ue énoncé s	s'il est vrai ou faux et justifier
a)	Une base d'un sous-espace vectoriel W de \mathbb{R}^n qui est un ensemble de vecteurs orthogonaux est une base orthonormale.		
	☐ VRAI		FAUX
b)	Un ensemble $S=\{v_1,v_2,\ldots,v_p\}$ orthogonal de vecteurs non nuls de \mathbb{R}^n est linéairement indépendant et de ce fait est une base du sous-espace qu'il engendre.		
	☐ VRAI		FAUX
c)	Une base orthonormale est une base orthogonale mais la réciproque est fausse en général.		
	☐ VRAI		FAUX
d)	l) Si x n'appartient pas au sous-espac nul.	e vectoriel	W , alors $x - \operatorname{proj}_W(x)$ n'est pas
	☐ VRAI		FAUX
e)	Tout ensemble orthonormal de \mathbb{R}^n est linéairement dépendant.		
	☐ VRAI		FAUX
f)	f) Soit W un sous-espace vectoriel de $v = 0$.	$ \in \mathbb{R}^n $. Si v	est dans W et dans W^{\perp} , alors
	☐ VRAI		FAUX
g)	Si U est une matrice de taille $m \times n$ avec des colonnes orthonormales, alors $U^TUx = x \ \forall x \in \mathbb{R}^n$.		
	☐ VRAI		FAUX

Question 11

a) Montrer que la matrice de rotation

$$R = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

où α est un réel quelconque, est orthogonale. Calculer $\det R$, les valeurs propres et des vecteurs propres correspondants.

b) Montrer que la matrice de réflexion

$$U = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

est orthogonale. Calculer $\det U,$ les valeurs propres et des vecteurs propres correspondants.

c) Montrer que toute matrice $n \times n$ de la forme $Q = I_n - 2uu^T$, où $u \in \mathbb{R}^n$ est un vecteur unitaire (de norme 1), est orthogonale. Ces matrices sont appelées matrices de réflexion élémentaires. A l'aide d'un raisonnement géométrique, déterminer les valeurs propres et les espaces propres correspondants.