Exercices — Série 9

Mots-clés: matrice d'une transformation linéaire dans des bases, valeurs et vecteurs propres, espaces propres, diagonalisation.

Question 1 Soit d une droite passant par (0,0) et notons par θ l'angle formé par d et l'axe Ox. Donnez la matrice de la symétrie axiale d'axe d par rapport à la base canonique de \mathbb{R}^2 , en fonction de θ .

Question 2 On considère la transformation $T: \mathbb{P}_3 \to \mathbb{P}_2$ définie par

$$T(a+bt+ct^2+dt^3) = (a+b+c+d) + (a+b)t + (c+d)t^2.$$

- a) Donner la matrice de T dans les bases $(1, t, t^2, t^3)$ de \mathbb{P}_3 et $(1, t, t^2)$ de \mathbb{P}_2 .
- b) Trouver la dimension et une base de Im(T) et Ker(T) respectivement.
- c) Vérifier que le polynôme $7 + 5t + 2t^2$ est bien dans l'image de T et donner ses coordonnées dans la base trouvée en b).
- d) Vérifier que le polynôme $2 2t 5t^2 + 5t^3$ est bien dans le noyau de T et donner ses coordonnées dans la base trouvée en b).

Question 3 Soit A une matrice de taille 2×2 et $\overrightarrow{x} = \begin{pmatrix} u \\ v \end{pmatrix}$.

- a) Montrer que le système $A\overrightarrow{x} = \lambda \overrightarrow{x}$ a une solution non nulle si et seulement si la matrice $A \lambda I_2$ n'est pas inversible.
- b) Prenons $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Calculer $A\overrightarrow{x}$.
- c) Trouver pour quelles valeurs de $\lambda \in \mathbb{R}$ la matrice $A \lambda I_2$ n'est pas inversible.
- d) Montrer que les deux valeurs trouvées ci-dessus sont des valeurs propres de A.
- e) Calculer les espaces propres correspondants aux deux valeurs propres.

Question 4

On considère la matrice $A = \begin{pmatrix} -15 & 1 & -9 \\ 0 & 6 & 0 \\ 4 & 1 & 3 \end{pmatrix}$.

a) Est-ce que $\lambda = 6$ est une valeur propre de A?

☐ VRAI ☐ FAUX

b) Est-ce que $\lambda = 1$ et $\lambda = -9$ sont des valeurs propres de A?

VRAI FAUX

Question 5

Soit A la matrice $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$. Montrer que 0 et 6 sont des valeurs propres de A et calculer les espaces propres associés.

Question 6

- a) Est-ce que $\lambda = 4$ est une valeur propre de la matrice: $A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{pmatrix}$? Si oui, trouver un vecteur propre pour cette valeur propre.
- b) Est-ce que $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$ est un vecteur propre de $\begin{pmatrix} 3 & 7 & 9 \\ -4 & -5 & 1 \\ 2 & 4 & 4 \end{pmatrix}$?
- c) Trouver une base de l'espace propre associé à la valeur propre $\lambda=3$ de la matrice

 $M = \begin{pmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{pmatrix}$. Quelle est la dimension de cet espace propre?

Question 7 Soit A de taille 3×3 inversible et λ une valeur propre de A.

 \square Alors λ est une valeur propre de A^{-1} .

Alors λ est une valeur propre de -A.

Alors λ^{-1} est une valeur propre de A^{-1} .

Alors λ^{-1} est une valeur propre de -A.

Question 8 Soit A la matrice $\begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$.
 Alors −4 et 6 sont valeurs propres de A. Alors 6 et 0 sont valeurs propres de A. Alors seulement 6 est une valeur propre de A. Alors −6 et −4 sont valeurs propres de A.
Question 9 Soit A une matrice de taille 2×2 qui n'est pas inversible. Alors
\square A est la matrice nulle. \square A n'a pas de valeur propre réelle. \square tout vecteur de \mathbb{R}^2 est un vecteur propre de A. \square 0 est une valeur propre de A.
Question 10 Soit A une matrice de taille $n \times n$ et $k \geq 2$ un entier. Vérifier que si λ est une valeur propre de A avec pour vecteur propre \vec{v} , alors λ^k est une valeur propre de
$A^k = \underbrace{A \ A \cdots \ A}_{k \text{ fois}}$
avec pour vecteur propre \vec{v} .
Question 11 Vrai ou Faux. Justifier votre affirmation. Soient $n \geq 2$ et $k \geq 2$ entiers.
a) Si A est une matrice $n \times n$ diagonalisable, alors A^k est diagonalisable.
☐ VRAI ☐ FAUX
b) Si A est une matrice $n \times n$ et A^k est diagonalisable, alors A est diagonalisable.
☐ VRAI ☐ FAUX

Question 12 Soient

$$A = \begin{pmatrix} 1 & -1 \\ -4 & 1 \end{pmatrix} , \quad P = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} , \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} .$$

Montrer que $A = PDP^{-1}$; ensuite, utiliser cette expression pour donner une expression simple pour A^k , pour un entier positif k quelconque.