Exercices — Série 8

Mots-clés: bases, dimension d'un (sous)-espace vectoriel, rang, théorème du rang, changement de base, matrice d'une transformation linéaire dans des bases.

Question 1 Soient
$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- a) Montrer que les matrices A et B sont équivalentes (selon les lignes).
- b) Calculer rg(A) et dim Ker A.
- c) Trouver une base pour chacun des sous-espaces $\operatorname{Im} A$, $\operatorname{Ker} A$ et $\operatorname{Ker} A^T$, ainsi que du sous-espace $\operatorname{Lgn}(A)$ engendré par les lignes de A.

Question 2 Soit $A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix}$. Alors Im(A) est un sous-espace de \mathbb{R}^4 de dimension 1.

VRAI FAUX

Question 3 Soit V un espace vectoriel et $v_1, \ldots, v_k \in V$. Alors

- \square Si la famille $\{v_1,\ldots,v_k\}$ engendre l'espace vectoriel V, alors dim $V \geq k$.
- \square Si la famille $\{v_1,\ldots,v_k\}$ engendre l'espace vectoriel V, alors dim V=k.
- \square Si la famille $\{v_1, \ldots, v_k\}$ est libre, alors dim $V \geq k$.
- \square Si la famille $\{v_1,\ldots,v_k\}$ est libre, alors dim V=k.

Question 4 Il existe une matrice A de taille 3×7 telle que:

- \bigsqcup dim Ker(A) = 4 et rg(A) \leq 2

Question 5 Soit A la matrice de la projection orthogonale $\mathbb{R}^3 \to \mathbb{R}^3$ sur le plan horizontal Vect $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$. Alors dim Ker(A) = 1 et $\operatorname{rg}(A) = 2$.

☐ VRAI ☐ FAUX

Question 6 Soit A une matrice inversible de taille 5×5 . Laquelle des affirmations suivantes est vraie?

 \square Ker(A) est vide

 \square Les lignes de A sont linéairement indépendantes

Le rang de A est strictement plus petit que 5

 \square Les colonnes de A n'engendrent pas \mathbb{R}^5

Question 7 Soit $T: \mathbb{P}_2 \to \mathbb{R}$ définie par T(p) = p(-1) + p(0) + p(1). Alors

 \Box T n'est pas linéaire

Question 8 Soit $T: \mathbb{P}_2 \to \mathbb{R}$ définie par T(p) = p(-1) + p(0) + p(1). Une base du noyau de T est donnée par $\{-2 + t + 3t^2, 2 - 3t^2\}$.

□ VRAI □ FAUX

Question 9

Soient $\mathcal{B} = (b_1, b_2)$ et $\mathcal{C} = (c_1, c_2)$ deux bases d'un espace vectoriel V. Supposons que $b_1 = 6c_1 - 2c_2$ et $b_2 = 9c_1 - 4c_2$.

- (a) Calculer la matrice de changement de base $P_{\mathcal{CB}}$ de \mathcal{B} vers \mathcal{C} .
- (b) Trouver $[x]_{\mathcal{C}}$ pour $x = -3b_1 + 2b_2$ en utilisant le résultat en (a).

Soient $\mathcal{A}=(\overrightarrow{a_1},\overrightarrow{a_2})$ et $\mathcal{D}=(\overrightarrow{d_1},\overrightarrow{d_2})$ les bases de \mathbb{R}^2 définies par:

$$\overrightarrow{a_1} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}, \quad \overrightarrow{a_2} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}, \quad \overrightarrow{d_1} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}, \quad \overrightarrow{d_2} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

- (c) Calculer la matrice de changement de base $P_{\mathcal{D}\mathcal{A}}$ de \mathcal{A} vers \mathcal{D} .
- (d) Calculer la matrice de changement de base P_{AD} de D vers A.

Question 10

Soit $T: \mathbb{R}^2 \to \mathbb{R}^3$ la transformation linéaire définie par $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ x + 3y \\ x - y \end{pmatrix}$.

- a) Donner la matrice $A = [T]_{\mathcal{E}\mathcal{E}}$ de T par rapport aux bases canoniques \mathcal{E} de \mathbb{R}^2 et \mathbb{R}^3 .
- b) Donner la matrice $B = [T]_{\mathcal{CB}}$ de T par rapport aux bases

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right) \text{ de } \mathbb{R}^2 \quad \text{et} \quad \mathcal{C} = \left(\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right) \text{ de } \mathbb{R}^3.$$

Question 11

Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire donnée par $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 + x_3 \\ 2x_2 + x_3 \\ x_1 + x_2 \end{pmatrix}$.

Soient $\mathcal E$ la base canonique de $\mathbb R^3$ et $\mathcal B=(\vec{b_1},\vec{b_2},\vec{b_3})$ la base de $\mathbb R^3$ donnée par

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

- a) Donner la matrice $[T]_{\mathcal{BE}}$ qui représente T par rapport aux bases \mathcal{E} (de départ) et \mathcal{B} (d'arrivée).
- b) Même question pour $[T]_{\mathcal{EB}}$, dans les bases \mathcal{B} (de départ) et \mathcal{E} (d'arrivée).
- c) Même question pour $[T]_{\mathcal{BB}}$, les bases \mathcal{B} (de départ) et \mathcal{B} (d'arrivée).