Série 7

Mots-clés: indépendance linéaire, familles génératrices, bases d'un espace vectoriel, coordonnées dans une base, dimension d'un espace vectoriel.

Question 1 Soit $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions réelles d'une variable réelle et soit $f \in V$. Dire lequel parmi les énoncés suivants est vrai.

S'il existe $n \in \mathbb{N}$ tel que $f(t) = 0 \ \forall \ t \geq n$, alors f est le vecteur nul de V.

Si f est le vecteur nul de V, alors f(t) = 0 pour tout $t \in \mathbb{R}$.

Si f(q) = 0 pour tout $q \in \mathbb{Q}$, alors f est le vecteur nul de V.

S'il existe $t \in \mathbb{R}$ avec f(t) = 0, alors f est le vecteur nul de V.

Question 2 On rappelle que, pour $n \in \mathbb{N}$, \mathbb{P}_n est l'espace vectoriel des polynômes de degré inférieur ou égal à n.

- a) Les vecteurs de \mathbb{P}_3 suivants sont-ils linéairement indépendants?
 - (i) p_1, p_2, p_3 tels que $p_1(t) = 1 t^2$, $p_2(t) = t^2$, $p_3(t) = t$, avec $t \in \mathbb{R}$.
 - (ii) p_1, p_2, p_3 tels que $p_1(t) = 1 + t + t^2$, $p_2(t) = t + t^2$, $p_3(t) = t^2$, avec $t \in \mathbb{R}$.
- b) Les vecteurs p_1 , p_2 , p_3 de (ii) forment-ils une base de \mathbb{P}_3 ?

Question 4

- a) On considère $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ exprimé dans la base canonique de \mathbb{R}^2 . Trouver les coordonnées de \vec{v} dans la base $(\vec{b_1}, \vec{b_2})$ de \mathbb{R}^2 , où $\vec{b_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $\vec{b_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- b) Idem pour $\vec{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ donné dans la base canonique de \mathbb{R}^3 à exprimer dans la base $(\vec{b_1}, \vec{b_2}, \vec{b_3})$ où $\vec{b_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{b_2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{b_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Question 5 $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$. Trouver une base de Ker*A* et de Im*A*.

Question 6 On se donne une base \mathcal{B} de \mathbb{R}^3

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ -7 \\ 0 \end{pmatrix} \right) \quad \text{et} \quad [x]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$$

où $[x]_{\mathcal{B}}$ désigne le vecteur des coordonnées du vecteur x dans cette base. Trouver le vecteur \overrightarrow{x} (c'est-à-dire ses coordonnées dans la base canonique). Trouver les coordonnées $[y]_{\mathcal{B}}$ du vecteur $\overrightarrow{y} = \begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix}$.

Question 7 Soit $W \subset \mathbb{R}^6$ donné par l'équation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$.

On considère les vecteurs $\overrightarrow{a} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$, $\overrightarrow{b} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$ et $\overrightarrow{c} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ -1 \\ -2 \\ 3 \end{pmatrix}$. Alors

- $\hfill \Box$ On peut compléter $\{\overrightarrow{a},\overrightarrow{b}\}$ en une base de W composée de 6 vecteurs.
- \square On peut compléter $\{\overrightarrow{a}, \overrightarrow{c}\}$ en une base de W composée de 5 vecteurs.
- \square On peut compléter $\{\overrightarrow{a}, \overrightarrow{c}\}$ en une base de W composée de 6 vecteurs.
- \square On peut compléter $\{\overrightarrow{a}, \overrightarrow{b}\}$ en une base de W composée de 5 vecteurs.

Question 8 Soit Tr: $M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ l'application "trace" définie par

$$\operatorname{Tr}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a + d.$$

Parmi les familles de matrices suivantes, laquelle forme une base de Ker(Tr)?

Question 9

- a) Soit $W = \text{Vect}\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ où $\vec{v_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Trouver $\dim(W)$.
- b) Trouver un sous-ensemble B de $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ tel que B soit une base de W.
- c) Agrandir l'ensemble $\{\vec{v_1} + \vec{v_2}\} \subset W$ pour obtenir une base de W.

Question 10 Soit $A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix}$. Alors

- \bigcap Ker(A) est un sous-espace de \mathbb{R}^2 de dimension 0.
- \bigcap Ker(A) est un sous-espace de \mathbb{R}^4 de dimension 2.
- \bigcap Ker(A) est un sous-espace de \mathbb{R}^2 de dimension 1.
- \square Ker(A) est un sous-espace de \mathbb{R}^4 de dimension 1.