Série 6

Mots-clés: espaces vectoriels, sous-espaces, combinaisons linéaires, espace engendré par des vecteurs, transformations linéaires entre espaces, noyau et image d'une transformation linéaire.

Question 1 Lesquels des ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^n ?

- a) Un cube plein dans \mathbb{R}^3 , centré à l'origine.
- b) La diagonale $\Delta = \{(x, x, \dots, x) \in \mathbb{R}^n\}.$
- c) Un sous-ensemble qui possède 2143 éléments.
- d) La réunion de tous les axes de coordonnées.
- e) L'ensemble des points à coordonnées entières.

Question 2 Soit $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $f : \mathbb{R} \to \mathbb{R}$. Lesquels des ensembles suivants sont des sous-espaces de V?

- a) $V_1 = \{ f \in V \mid f(0) = f(1) \}.$
- b) $V_2 = \{ f \in V \mid f(x) \ge 0 \text{ pour tout } x \in \mathbb{R} \}.$
- c) $V_3 = \{ f \in V \mid f \text{ est bijective} \}.$

Question 3 Soit \mathbb{P}_n , l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n. Lesquels des sous-ensembles suivants de \mathbb{P}_n sont des sous-espaces vectoriels?

- a) L'ensemble $V_1 = \{ p \in \mathbb{P}_n \mid p(1) = 0 \}.$
- b) L'ensemble V_2 de tous les polynômes de degré exactement n.
- c) L'ensemble $V_3 = \{ p \in \mathbb{P}_n \mid p(0) = 0 \}.$

Question 4 Soit $M_{n\times n}(\mathbb{R})$, l'espace vectoriel des matrices $n\times n$ à coefficients réels. Lesquels des ensembles suivants sont des sous-espaces vectoriels de $M_{n\times n}(\mathbb{R})$?

- a) L'ensemble des matrices triangulaires supérieures dans $M_{2\times 2}(\mathbb{R})$, i.e. des matrices de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ avec $a, b, c \in \mathbb{R}$.
- b) L'ensemble des matrices de la forme $\begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$ avec $a, b \in \mathbb{R}$.
- c) L'ensemble des matrices de trace nulle.
- d) L'ensemble des matrices de déterminant nul.
- e) L'ensemble des matrices A telles que $A^4 = -I_n$.

Soit V un espace vectoriel et $\vec{v_1}, \vec{v_2}, \vec{v_3} \in V$. Décrire explicitement Question 5 le sous-espace $\text{Vect}(\vec{v_1}, \vec{v_2}, \vec{v_3})$ engendré par $\vec{v_1}, \vec{v_2}, \vec{v_3}$ dans les cas suivants:

a)
$$V = \mathbb{R}^3$$
, $\vec{v_1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

b)
$$V = \mathbb{P}_3$$
, $\vec{v_1} = t$, $\vec{v_2} = t^2$, $\vec{v_3} = t^3$.

Question 6 On travaille dans $V = \mathbb{P}_3$. Soient $p_1(t) = 1 - t$, $p_2(t) = t^3$, $p_3(t) = t^2 - t + 1$. Est-ce que le polyôme $q(t) = t^3 - 2t + 1$ appartient à $Vect(p_1, p_2, p_3)$?

Question 7 Soit $n \in \mathbb{N}$ un entier $n \geq 1$. Pour chacune des applications suivantes, déterminer et justifier si c'est une transformation linéaire. Dans l'affirmative déterminer son noyau et son image.

- a) L'application déterminant det : $M_{n\times n}(\mathbb{R}) \longrightarrow \mathbb{R}$.
- b) L'application trace $Tr: M_{n \times n}(\mathbb{R}) \longrightarrow \mathbb{R}$.
- c) L'application dérivée $D: \mathbb{P}_n \to \mathbb{P}_n$ qui associe à $p \in \mathbb{P}_n$ sa dérivée p'.

Soient $\overrightarrow{w} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ et $A = \begin{pmatrix} 1 & 3 & -5/2 \\ -3 & -2 & 4 \\ 2 & 4 & -4 \end{pmatrix}$. Question 8

Déterminer si \overrightarrow{w} est dans Im(A), dans Ker(A) ou bien dans les deux.

Question 9

2) Soit $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et $\vec{v_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \vec{v_2} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$. Alors

3) Soit $T: \mathbb{R}^3 \to \mathbb{R}^2$ définie par T(x,y,z) = (x-y,y-z). Alors