Série 4

Mots-clés: calcul matriciel, produit de matrices, puissance d'une matrice carrée, transposée, inverse d'une matrice carrée, matrices élémentaires.

Question 1

Considérons les matrices suivantes:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 4 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}, \ D = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ E = \begin{pmatrix} 1 & 4 \end{pmatrix}.$$

Calculer les produits suivants (s'ils existent). Si les produits n'existent pas, expliquer pourquoi.

- a) AB, BA, AC, CA, BC, CB, CD, EC, EA
- b) AA^{T} , $A^{T}A$, BA^{T} , BC^{T} , $C^{T}A$, BD^{T} , $D^{T}B$

Question 2

a) On se donne

$$A = \begin{pmatrix} 3 & -4 \\ -5 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 7 & 4 \\ 5 & k \end{pmatrix}.$$

Pour quelle(s) valeur(s) de $k \in \mathbb{R}$ a-t-on AB = BA?

b) Soit

$$M = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}, \quad N = \begin{pmatrix} 3 & -8 \\ 2 & 3 \end{pmatrix} \quad \text{et } T = \begin{pmatrix} 5 & 2 \\ 1 & -2 \end{pmatrix}.$$

Vérifier que MN=MT, bien que N soit différent de T.

Question 3 Soit
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
 définie par $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$, et $T_2: \mathbb{R}^3 \to \mathbb{R}$ définie par $\begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix} \mapsto x_1 + x_2 + x_3$.

- a) Écrire les matrices canoniques associées à T_1 et T_2 et le produit matriciel associé à la composition $T_2 \circ T_1$ telle que $T_2 \circ T_1(\vec{x}) = T_2(T_1(\vec{x}))$ pour tout $\vec{x} \in \mathbb{R}^2$.
- b) Quel est le domaine de définition de $T_2 \circ T_1$? Quel est le domaine d'arrivée?

Question 4 Calculer les produits matriciels suivants, et indiquer les compositions correspondantes de transformations linéaires, avec les dimensions des espaces, $T_{AB}: \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots} \to \mathbb{R}^{\cdots}$.

a)
$$AB$$
, où $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}$.

b)
$$ABC$$
, où $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$.

c)
$$ABC$$
, où $A = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Question 5

- a) Dans le plan, soit S la symétrie axiale d'axe x = -y. Décrire son inverse s'il existe. Quelles sont les matrices de ces applications?
- b) Même question pour H l'homothétie de rapport 3.
- c) Même question pour R_{θ} la rotation d'angle θ centrée en l'origine.

Question 6

- a) Déterminer les matrices élémentaires 3×3 suivantes :
 - E_1 , qui permute les deuxièmes et troisièmes lignes;
 - E_2 , qui multiplie la deuxième ligne par 8;
 - E_3 , qui ajoute 7 fois la première ligne à la troisième.
- b) Les matrices E_1, E_2 et E_3 sont elles inversibles? Pourquoi? Si oui, donner leur inverse et l'inverse du produit $E_1 E_2 E_3$.
- c) A quelle opération élémentaire chacune de ces matrices suivantes se rapportet-elle?

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Question 7 On considère les matrices élémentaires de taille 4×4 .

- a) Donner la matrice élémentaire qui permet de permuter les lignes 2 et 4.
- b) Donner la matrice élémentaire qui ajoute cinq fois la ligne 1 à la ligne 3.
- c) Donner la matrice élémentaire qui multiplie la ligne 3 par 17.
- d) Donner les inverses des matrices trouvées aux questions a, b et c.

Question 8

Déterminer lesquelles des matrices suivantes sont inversibles. Utiliser le moins de calculs possible et justifier votre réponse. On ne demande pas le calcul de l'inverse!

$$A = \begin{pmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & -2 & -1 \\ -2 & -6 & 3 & 2 \\ 3 & 5 & 8 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 3 & 6 & 8 & 0 \\ 4 & 7 & 9 & 10 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 3 & -5 \\ 0 & 2 & -3 \\ 0 & -4 & 7 \\ -1 & 5 & -8 \end{pmatrix}.$$

Question 9

- a) Est-ce que la matrice $A=\begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{pmatrix}$ est inversible? Si oui calculer son inverse.
- b) Trouver les solutions du système homogène Ax = 0.
- c) Trouver les solutions du système $Ax = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Question 10 Pour quelles valeurs des paramètres a, b, c la matrice A ci-dessous est-elle inversible?

$$A = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & c & 1 \end{pmatrix}$$

Donner l'inverse de A lorsque cela est possible.

Question 11 Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

a) Soient A, B et C trois matrices. Alors (AB)C = (AC)B.

Faux

Vrai

b) Si A est une matrice inversible, alors A^{-1} l'est aussi.

Faux

Vrai

c) Le produit de plusieurs matrices inversibles de taille $n \times n$ n'est pas inversible.

Faux

____ Vrai

d) Si A est une matrice inversible de taille $n \times n$, alors l'équation $A\vec{x} = \vec{b}$ est compatible quel que soit $\vec{b} \in \mathbb{R}^n$.

Faux

_____ Vrai

Question 12

Soient	A, B	deux	matrices	inversibles,	alors	AB	est	inversible	et
$(AB)^{-1} = A^{-1}B^{-1}.$									

Soient A, B deux matrices inversibles, alors A + B est inversible.

Il existe une matrice A inversible et une matrice B qui ne l'est pas telles que AB est inversible.

Soient A, B deux matrices telles que A ou B n'est pas inversible. Alors AB n'est pas inversible.

b) Soit A une matrice $m \times n$ et B une matrice $n \times p$.

 \square Si m = n = p, $A = A^T$ et $B = B^T$, alors $(AB)^T = AB$.

 \square Si m = n et $A = A^T$, alors A est diagonale.

 \square Alors $(A^{-1})^T = (A^T)^{-1}$ si A est inversible.

c) Soient A, B, C trois matrices $n \times n$.

 \square Si A est inversible et AC = BC, alors A = B.

 \square Si $C = C^T$ et AC = BC, alors A = B.

 \square Si C est inversible et AC = BC, alors A = B.

 \square Si AC = BC, alors A = B.