Série 2

Mots-clés: Espaces \mathbb{R}^n , équations vectorielles, combinaisons linéaires, partie engendrée par des vecteurs, équations matricielles, espace des colonnes, multiplication matrice-vecteur, systèmes (in)homogènes.

Question 1 Soient les vecteurs $\vec{a}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 5 \\ -13 \\ -3 \end{pmatrix}$, et $\vec{b} = \begin{pmatrix} -3 \\ 8 \\ 1 \end{pmatrix}$.

- i) Est-il possible d'écrire \vec{b} comme combinaison linéaire de $\vec{a_1}$ et $\vec{a_2}$?
- ii) Donner une interprétation géométrique du résultat.

Question 2

Prenons les vecteurs $\vec{a_1} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$, $\vec{a_2} = \begin{pmatrix} -3 \\ 1 \\ 8 \end{pmatrix}$, et $\vec{b} = \begin{pmatrix} \alpha \\ -5 \\ -3 \end{pmatrix}$. Pour

quelle(s) valeur(s) de α le vecteur \vec{b} est-il une combinaison linéaire de $\vec{a_1}$ et $\vec{a_2}$?

Question 3

Considérons le système linéaire

$$\begin{cases} x_1 + 3x_2 - 5x_3 = 4 \\ x_1 + 4x_2 - 8x_3 = 7 \\ -3x_1 - 7x_2 + 9x_3 = -6 \end{cases}$$

- i) Écrire le système sous forme matricielle $A\vec{x} = \vec{b}$.
- ii) Écrire le système comme combinaison linéaire des colonnes de la matrice A.
- iii) Trouver la solution de l'équation $A\vec{x} = \vec{b}$.
- iv) Écrire l'ensemble des solutions en fonction d'un paramètre.

Question 4

- a) Soient les vecteurs $\overrightarrow{v_1} = \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix}$, $\overrightarrow{v_2} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$, $\overrightarrow{w} = \begin{pmatrix} 3 \\ 10 \\ h \end{pmatrix}$.
 - i) Pour quelle(s) valeur(s) de h le vecteur \overrightarrow{w} peut-il être obtenu comme combinaison linéaire de $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$?
 - ii) Dans ce cas quels sont les coefficients a_1 , a_2 des vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$?
- b) Le vecteur $\overrightarrow{v} = \begin{pmatrix} -5 \\ -3 \\ -6 \end{pmatrix}$, se trouve-t-il dans le plan de \mathbb{R}^3 engendré par les colonnes de la matrice $A = \begin{pmatrix} 3 & 5 \\ 1 & 1 \\ -2 & -8 \end{pmatrix}$. Justifiez votre réponse.

Question 5 Soit $V = \text{Vect}\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ avec

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ \overrightarrow{v_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ \overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \ \overrightarrow{v_4} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Laquelle des informations suivantes est correcte?

 $\bigcup V$ contient une infinité de vecteurs de \mathbb{R}^4 .

 $\bigcup V$ ne contient aucun vecteur de \mathbb{R}^4 .

 $\bigcup V$ contient tous les vecteurs de \mathbb{R}^4 .

Question 6

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- 1) Le système d'équations linéaires homogène représenté par la matrice
 - $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 7 \end{pmatrix}$ est compatible.
 - Vrai Faux
- 2) Le système d'équations linéaires inhomogène représenté par la matrice
 - $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 7 \end{pmatrix}$ est compatible.
 - Faux Vrai
- 3) Si la matrice des coefficients d'un système de quatre équations à quatre inconnues a un pivot dans chaque colonne, alors le système est compatible.
 - Vrai Faux
- 4) Si la matrice augmentée d'un système de quatre équations à quatre inconnues a un pivot dans chaque ligne, alors le système est compatible.
 - Faux Vrai
- 5) Si \vec{x} est une solution non nulle de $A\vec{x}=\vec{0}$, alors aucune composante de \vec{x} est nulle.
 - Faux Vrai
- 6) Si A est une matrice $m \times n$ et $\vec{v}, \vec{w} \in \mathbb{R}^n$ sont tels que $A\vec{v} = \vec{0} = A\vec{w}$, alors $A(\lambda \vec{v} + \mu \vec{w}) = \vec{0}$ pour tous $\lambda, \mu \in \mathbb{R}$.
 - Faux Vrai

Question 7 Soit $V = \text{Vect}\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ avec

$$\vec{v_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \vec{v_2} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ \vec{v_4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Laquelle des informations suivantes est correcte?

 $\bigcup V$ contient tous les vecteurs de \mathbb{R}^4 .

V contient seulement v_1, v_2, v_3, v_4 .

 \square Le vecteur nul n'appartient pas à V.

Question 8 Les deux lois de Kirchhoff

- 1. À chaque nœud (embranchement) d'un circuit électrique, la somme des courants (intensités) qui entrent dans le nœud est égale à la somme des courants qui en sortent.
- 2. La somme des tensions (différences de potentiels) le long de tout circuit fermé est nulle (l'augmentation du potentiel est comptée avec + et la diminution avec -).

On rappelle que la chute de potentiel U dans une résistance R traversée par un courant d'intensité I est donnée par la loi d'Ohm U=RI.

Déterminer les intensités i_1 , i_2 , i_3 dans le circuit suivant.

