Durée: 144 minutes

# Algèbre linéaire Examen Partie commune Automne 2023

# Réponses

#### Pour les questions à **choix multiple**, on comptera :

- +3 points si la réponse est correcte,
  - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

#### Pour les questions de type **vrai-faux**, on comptera :

- +1 point si la réponse est correcte,
  - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

### Notation

- Pour une matrice A,  $a_{ij}$  désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur  $\vec{x} \in \mathbb{R}^n$ ,  $x_i$  désigne la *i*-ème composante de  $\vec{x}$ .
- $-I_m$  désigne la matrice identité de taille  $m \times m$ .
- $-\mathbb{P}_n(\mathbb{R})$  désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathcal{M}_{m\times n}(\mathbb{R})$  désigne l'espace vectoriel des matrices de taille  $m\times n$  à coefficients réels.
- Pour  $\vec{x}, \vec{y} \in \mathbb{R}^n$ , le produit scalaire euclidien est défini par  $\vec{x} \cdot \vec{y} = x_1 y_1 + \ldots + x_n y_n$ .
- Pour  $\vec{x} \in \mathbb{R}^n$ , la norme euclidienne est définie par  $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$ .

## Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

#### Question 1: La matrice

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

possède une décomposition QR telle que

$$r_{12} = \sqrt{2}$$

$$r_{12} = 1$$

Question 2: Soient

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \right\}$$

deux bases de  $\mathbb{R}^3$ . Soit P la matrice de changement de base de la base  $\mathcal{B}$  vers la base  $\mathcal{C}$ , telle que  $[\vec{x}]_{\mathcal{C}} = P[\vec{x}]_{\mathcal{B}}$ pour tout  $\vec{x} \in \mathbb{R}^3$ . Alors la deuxième ligne de P est

$$\square$$
  $\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$ 

Question 3: Soit

$$A = \begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 2 & \sqrt{3} & \pi & 3 & \sqrt{2} \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & \pi & 3 & \sqrt{2} \\ \sqrt{3} & 1 & \pi & 3 & \sqrt{2} \end{pmatrix}.$$

Alors

$$\det(A) = 12\pi$$

$$\det(A) = -6\pi$$

**Question 4:** La droite de régression linéaire pour les points (-3, -7), (-2, -3), (0, 3), (3, 7) est

$$y = \frac{8}{7} + \frac{16}{7}x$$

$$y = \frac{16}{100} + \frac{8}{100} = 0$$

$$y = -\frac{16}{7} + \frac{8}{7}x$$

**Question 5:** Soit  $\mathcal{B} = \{2-t, t+t^2, -1+t^3, -1-t+2t^2\}$  une base de  $\mathbb{P}_3(\mathbb{R})$ . La quatrième coordonnée du polynôme  $p(t) = t + 2t^2 + 3t^3$  par rapport à la base  $\mathcal{B}$  est égale à

$$= -\frac{1}{7}$$

$$\square$$
  $-$ 

#### Question 6: Soit

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 3 & -1 & 3 \\ -1 & 1 & 1 \end{array}\right).$$

Les valeurs propres de A sont

-3 et 2

-2 et 3

-1 et 2

-1 et 1

Question 7: Soient

$$\vec{w_1} = \begin{pmatrix} 2 \\ 1 \\ 3 \\ -1 \\ 1 \end{pmatrix}, \quad \vec{w_2} = \begin{pmatrix} -2 \\ 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \quad \vec{w_3} = \begin{pmatrix} 0 \\ 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \quad \vec{y} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix}.$$

Si  $\vec{b}$  est la projection orthogonale de  $\vec{y}$  sur  $W = \text{span}\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ , alors

 $b_3 = 20$ 

 $b_3 = \frac{7}{8}$ 

 $b_3 = 14$ 

Question 8: Soient

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix} \qquad \text{et} \qquad \vec{b} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

Si  $\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$  est une solution de l'équation  $A\vec{x} = \vec{b}$  au sens des moindres carrés, alors l'erreur de l'approximation de  $\vec{b}$  par  $A\hat{x}$  est

 $\|\vec{b} - A\hat{x}\| = \sqrt{6}$ 

Question 9: Le système d'équations linéaires

$$\begin{cases} x_1 + 2x_2 + 5x_3 - 4x_4 = 0 \\ x_2 + 2x_3 + x_4 = 7 \\ x_2 + 3x_3 - 5x_4 = -4 \\ 2x_1 + 3x_2 + 4x_3 - 3x_4 = 1 \end{cases}$$

possède une solution unique telle que

 $x_1 = 2$ 

 $x_1 = -3$ 

Question 10: Soit

$$A = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 5 & -1 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 0 & 1 \end{pmatrix}.$$

Alors l'inverse  $B = A^{-1}$  de la matrice A est tel que

 $b_{33} = \frac{4}{39}$ 

 $b_{33} = -\frac{1}{13}$ 

Question 11: Soit W l'espace vectoriel des matrices symétriques de taille  $2\times 2$  et soit  $T: \mathbb{P}_2(\mathbb{R}) \to W$  l'application linéaire définie par

$$T(a+bt+ct^2) = \begin{pmatrix} a & b-c \\ b-c & a+b+c \end{pmatrix}$$
 pour tout  $a,b,c \in \mathbb{R}$ .

Soient

$$\mathcal{B} = \left\{ 1, 1 - t, t + t^2 \right\} \qquad \text{et} \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

des bases de  $\mathbb{P}_2(\mathbb{R})$  et W respectivement. La matrice A associée à T par rapport à la base  $\mathcal{B}$  de  $\mathbb{P}_2(\mathbb{R})$  et la base  $\mathcal{C}$  de W, telle que  $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$  pour tout  $p \in \mathbb{P}_2(\mathbb{R})$ , est

$$\square \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix} \qquad \qquad \square \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \\
\square \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & 2 & 0 \end{pmatrix} \qquad \qquad \square \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Question 12: La matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

est inversible mais pas diagonalisable
est inversible et diagonalisable
n'est ni inversible ni diagonalisable
est diagonalisable mais pas inversible

Question 13: Soit 
$$A = \begin{pmatrix} 2 & 0 & 3 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
. Alors

- tous les espaces propres de A ont la même dimension
- la multiplicité de la valeur propre  $\lambda=4$  est égale à 2
- $\hfill \Box$ toutes les valeurs propres de A ont la même multiplicité
- $\hfill \square$  la dimension de l'espace propre associé à la valeur propre  $\lambda=2$  est égale à 2

**Question 14:** Soit  $T: \mathbb{R}^2 \to \mathbb{R}^4$  l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x\\y \end{array}\right)\right) = \left(\begin{array}{c} x-y\\x-y\\-5x+6y\\x+y \end{array}\right).$$

Alors

T est injective mais pas surjective
T est injective et surjective
T n'est ni injective ni surjective

T est surjective mais pas injective

Question 15: L'algorithme de Gram-Schmidt appliqué aux colonnes de la matrice

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -2 \end{pmatrix}$$

fournit une base orthogonale de  $\mathrm{Im}(A)$  donnée par les vecteurs

$$\blacksquare \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 1 \\ 1 \\ -2 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 3 \\ -2 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$

#### Deuxième partie, questions de type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 16: Soit W un sous-espace vectoriel de  $\mathbb{R}^n$  et soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs de  $\mathbb{R}^n$ . Si  $\vec{u} \in W$ , alors le produit scalaire euclidien entre  $\vec{u}$  et  $\vec{v}$  est égal au produit scalaire euclidien entre  $\vec{u}$  et la projection orthogonale de  $\vec{v}$  sur W. VRAI FAUX Question 17: Soit  $T: \mathbb{P}_6(\mathbb{R}) \to \mathcal{M}_{3\times 2}(\mathbb{R})$  une application linéaire. Alors il existe  $p,q \in \mathbb{P}_6(\mathbb{R})$  tels que  $p \neq q$  et T(p) = T(q). VRAI FAUX **Question 18:** Soit  $\{\vec{b}_1,\ldots,\vec{b}_m\}$  une base de  $\mathbb{R}^m$ . Si A est une matrice de taille  $m \times n$  telle que l'équation  $A\vec{x} = \vec{b}_k$  possède au moins une solution pour tout k = 1, ..., m, alors  $Im(A) = \mathbb{R}^m$ . FAUX VRAI Question 19: Si  $\vec{u}_1, \dots, \vec{u}_k$  sont k vecteurs orthonormés de  $\mathbb{R}^n$ , alors le complément orthogonal de span $\{\vec{u}_1,\ldots,\vec{u}_k\}$  est un sous-espace vectoriel de  $\mathbb{R}^n$  de dimension n-k. FAUX VRAI Question 20: Si A et B sont deux matrices inversibles de taille  $n \times n$  telles que A + B n'est pas la matrice nulle, alors A + B est aussi inversible. VRAI FAUX Question 21: Soit  $A \in \mathcal{M}_{4\times 4}(\mathbb{R})$  une matrice de rang 3. Si  $\vec{u}, \vec{v}, \vec{w}$  sont des vecteurs linéairement indépendants dans  $\mathbb{R}^4$ , alors  $A\vec{u}$ ,  $A\vec{v}$ ,  $A\vec{w}$  sont linéairement indépendants dans  $\mathbb{R}^4$ . VRAI FAUX **Question 22:** Soit  $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$  une matrice diagonalisable avec valeurs propres 2, 3, -5. Alors  $\det(A^3) = -27000.$ VRAI FAUX **Question 23:** Soient V et W deux espaces vectoriels et soit  $T: V \to W$  une application linéaire. Si dim(Ker T) = dim(V), alors Im(T) =  $\{\vec{0}_W\}$ . VRAI FAUX Question 24: Soit A une matrice de taille  $m \times n$  avec m < n. Si la forme échelonnée réduite de A possède

exactement k lignes nulles, alors l'ensemble des solutions du système homogène  $A\vec{x} = \vec{0}$  est un sous-espace vectoriel de  $\mathbb{R}^n$  de dimension n - k.

VRAI FAUX

| Question 25: Soit $A$ une matrice de taille $n \times n$ et soit $T: \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire définie par $T(\vec{x}) = A\vec{x}$ , pour tout $\vec{x} \in \mathbb{R}^n$ . Si $A$ est telle que $A^5 = 0$ , alors $T$ est surjective.                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ VRAI ■ FAUX                                                                                                                                                                                                                                                                                                                                           |
| Question 26: Si $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ est une matrice symétrique, alors $\det(A-A^T) = \det(A) - \det(A^T).$                                                                                                                                                                                                                     |
| VRAI FAUX                                                                                                                                                                                                                                                                                                                                               |
| <b>Question 27:</b> Soit $q$ un polynôme de degré 3 quelconque. Alors l'ensemble                                                                                                                                                                                                                                                                        |
| $\left\{ p \in \mathbb{P}_3(\mathbb{R}) : q(0) - p(0) = 0 \right\}$                                                                                                                                                                                                                                                                                     |
| est un sous-espace vectoriel de $\mathbb{P}_3(\mathbb{R})$ .                                                                                                                                                                                                                                                                                            |
| ☐ VRAI ■ FAUX                                                                                                                                                                                                                                                                                                                                           |
| Question 28: Soit $W$ le sous-espace vectoriel de $\mathbb{P}_5(\mathbb{R})$ engendré par $p_1, p_2, p_3, p_4 \in \mathbb{P}_5(\mathbb{R})$ . Si $\dim(W) = 4$ alors il existe deux polynômes $p_5, p_6 \in \mathbb{P}_5(\mathbb{R})$ tels que la famille $\mathcal{B} = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ est une base de $\mathbb{P}_5(\mathbb{R})$ . |
| VRAI FAUX                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                         |

#### Troisième partie, questions de type ouvert

- Répondre dans l'espace dédié en utilisant un stylo (ou feutre fin) noir ou bleu foncé.
- Votre réponse doit être soigneusement justifiée: toutes les étapes de votre raisonnement doivent figurer dans votre réponse.
- Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 29: Cette question est notée sur 3 points.



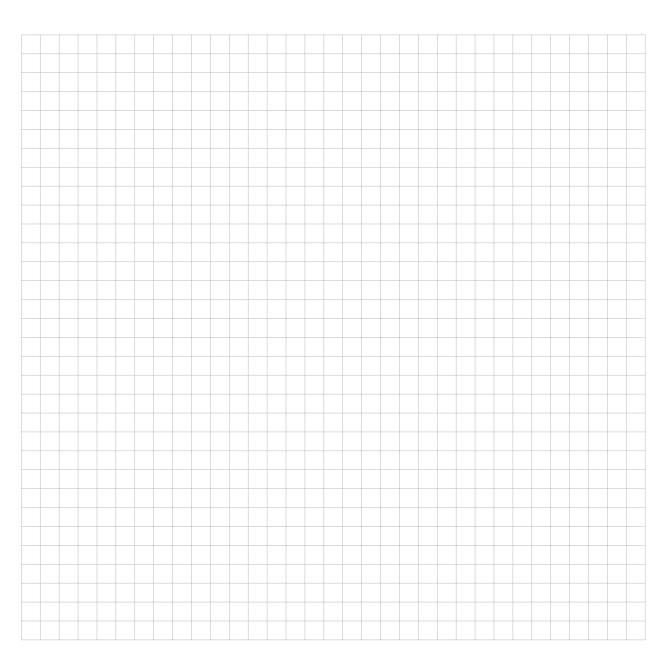
Soient  $\vec{v}_1,\dots,\vec{v}_n\in\mathbb{R}^n$  des vecteurs linéairement indépendants.

Soit A une matrice diagonalisable de taille  $n \times n$  telle que  $\vec{v}_1, \dots, \vec{v}_n$  sont des vecteurs propres de A associés aux valeurs propres  $\alpha_1, \dots, \alpha_n$  respectivement.

Soit B une matrice diagonalisable de taille  $n \times n$  telle que  $\vec{v}_1, \dots, \vec{v}_n$  sont des vecteurs propres de B associés aux valeurs propres  $\beta_1, \dots, \beta_n$  respectivement.

Montrer que la matrice A-B est diagonalisable et satisfait

$$\det(A - B) = (\alpha_1 - \beta_1) \cdots (\alpha_n - \beta_n).$$





Soit A une matrice symétrique de taille  $3\times 3$  dont les valeurs propres sont

$$\lambda_1=2,\quad \lambda_2=-2\quad {\rm et}\quad \lambda_3=4\,.$$

Soit c un nombre réel et soient

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \quad \text{et} \quad \vec{v}_3 = \begin{pmatrix} c \\ 2 \\ 0 \end{pmatrix}$$

des vecteurs propres de la matrice A associés aux valeurs propres  $\lambda_1,\,\lambda_2$  et  $\lambda_3$  respectivement.

Déterminer la valeur de c et construire la matrice A.

